首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniform head in horizontal and vertical wells   总被引:1,自引:0,他引:1  
Steward DR  Jin W 《Ground water》2006,44(1):86-90
The steady-state head within a fully penetrating well may be estimated by evaluating the Thiem equation at the radius of the well. A method is presented here to extend results from the Thiem equation to horizontal wells and to partially penetrating wells. The particular model used in this investigation is based upon the analytic element method; it accurately reproduces a boundary condition of uniform head along the cylindrical surface at the perforated face of the well. This model is exercised over a representative range of parameters including the well's length, radius, and pumping rate, and the aquifer's hydraulic conductivity and thickness. Results are presented in a set of figures and tables that compare the well's drawdown to the drawdown that would have been obtained using the Thiem solution with the same pumping rate and radius. A methodology is presented to estimate the head within a horizontal or partially penetrating well by adding a correction term to results that can be readily obtained from computer models of vertical fully penetrating wells. This approach may also be used to contrast the differences in head between horizontal and vertical wells of various lengths, radii, and placement elevations.  相似文献   

2.
A variationally coupled BEM–FEM is developed which can be used to analyse dynamic response, including free-surface sloshing motion, of 3-D rectangular liquid storage tanks subjected to horizontal ground excitation. The tank structure is modelled by the finite element method and the fluid region by the indirect boundary element method. By minimizing a single Lagrange function defined for the entire system, the governing equation with symmetric coefficient matrices is obtained. To verify the newly developed method, the analysis results are compared with the shaking-table test data of a 3-D rectangular tank model and with the solutions by the direct BEM–FEM. Analytical studies are conducted on the dynamic behaviour of 3-D rectangular tanks using the method developed. In particular, the characteristics of the sloshing response, the effect of the rigidity of adjacent walls on the dynamic response of the tanks and the orthogonal effects are investigated. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Two prediction models for calculating vibration from underground railways are developed: the pipe-in-pipe model and the coupled periodic finite element–boundary element (FE–BE) model.The pipe-in-pipe model is a semi-analytical three-dimensional model that accounts for the dynamic interaction between the track, the tunnel and the soil. The continuum theory of elasticity in cylindrical coordinates is used to model two concentric pipes: an inner pipe to represent the tunnel wall and an outer pipe to represent the surrounding soil. The tunnel and soil are coupled accounting for equilibrium of stresses and compatibility of displacements at the tunnel–soil interface. This method assumes that the tunnel is invariant in the longitudinal direction and the problem is formulated in the frequency–wavenumber domain using a Fourier transformation. A track, formulated as an Euler–Bernoulli beam, is then coupled to this model. Results are transformed to the space domain using the inverse Fourier transform.The coupled periodic FE–BE model is based on a subdomain formulation, where a boundary element method is used for the soil and a finite element method for the tunnel. The Craig–Bampton substructuring technique is used to efficiently incorporate the track in the tunnel. The periodicity of the tunnel is exploited using the Floquet transformation to formulate the track–tunnel–soil interaction problem in the frequency–wavenumber domain and to compute the wave field radiated into the soil.An invariant concrete tunnel, embedded in a homogeneous full space is analyzed using both approaches. The pipe-in-pipe model offers an exact solution to this problem, which is used to validate the coupled periodic FE–BE model. The free field response due to a harmonic load in the tunnel is predicted and results obtained with both models are compared. The advantages and limitations of both models are highlighted. The coupled periodic FE–BE model has a greater potential as it can account for the complex periodic geometry of the tunnel and the layering in a soil medium. The effect of coupling a floating slab to the tunnel–soil system is also studied with both models by calculating the insertion gain.  相似文献   

4.
Different levels of model sophistication have recently emerged to support seismic risk assessment of bridges, but mostly at the expense of neglecting the influence of vertical ground motions (VGMs). In this paper, the influence of VGMs on bridge seismic response is presented and the results are compared with the case of horizontal‐only excitations. An advanced finite element model that accounts for VGMs is first developed. Then, to investigate the effect of soil–structure interaction (SSI) including liquefaction potential, the same bridge with soil‐foundation and fixed boundary conditions is also analyzed. Results show that the inclusion of the VGMs has a significant influence on the seismic response, especially for the axial force in columns, normal force of bearings, and the vertical deck bending moments. However, VGMs do not have as much influence on the seismic demand of the pile cap displacements or pile maximum axial forces. Also, the significant fluctuation of the column axial force can reduce its shear and flexural capacity, and a heightened reversal of flexural effects may induce damage in the deck. In addition, relative to the fixed base case, SSI effects tend to reduce response quantities for certain ground motions while increasing demands for others. This phenomenon is explained as a function of the frequency content of the ground motions, the shift in natural vertical periods, and the VGM spectral accelerations at higher modes. Moreover, the mechanisms of liquefaction are isolated relative to SSI effects in nonliquefiable soils, revealing the influence of liquefaction on bridge response under VGMs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, an analytical method is proposed to determine the dynamic response of 3‐D rectangular liquid storage tanks with four flexible walls, subjected to horizontal seismic ground motion. Fluid–structure interaction effects on the dynamic responses of partially filled fluid containers, incorporating wall flexibility, are accounted for in evaluating impulsive pressure. The velocity potential in which boundary conditions are satisfied is solved by the method of separation of variables using the principle of superposition. The impulsive pressure distribution is then computed. Solutions based on 3‐D modeling of the rectangular containers are obtained by applying the Rayleigh–Ritz method using the vibration modes of flexible plates with suitable boundary conditions. Trigonometrical functions that satisfy boundary conditions of the storage tank such that the flexibility of the wall is thoroughly considered are used to define the admissible vibration modes. The analysis is then performed in the time domain. Moreover, an analytical procedure is developed for deriving a simple formula that evaluates convective pressure and surface displacements in a similar rigid tank. The variation of dynamic response characteristics with respect to different tank parameters is investigated. A mechanical model, which takes into account the deformability of the tank wall, is developed. The parameters of such a model can be obtained from developed charts, and the maximum seismic loading can be predicted by means of a response spectrum characterizing the design earthquake. Accordingly, a simplified but sufficiently accurate design procedure is developed to improve code formulas for the seismic design of liquid storage tanks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this paper is to present an analytical solution for describing the head distribution in an unconfined aquifer with a single pumping horizontal well parallel to a fully penetrating stream. The Laplace-domain solution is developed by applying Fourier sine, Fourier and Laplace transforms to the governing equation as well as the associated initial and boundary conditions. The time-domain solution is obtained after taking the inverse Laplace transform along with the Bromwich integral method and inverse Fourier and Fourier sine transforms. The upper boundary condition of the aquifer is represented by the free surface equation in which the second-order slope terms are neglected. Based on the solution and Darcy’s law, the equation representing the stream depletion rate is then derived. The solution can simulate head distributions in an aquifer infinitely extending in horizontal direction if the well is located far away from the stream. In addition, the solution can also simulate head distributions in confined aquifers if specific yield is set zero. It is shown that the solution can be applied practically to evaluate flow to a horizontal well.  相似文献   

7.
《Advances in water resources》2005,28(10):1102-1111
We present a range of analytical solutions to the combined transient water and solute transport for horizontal flow. We adopt the concept of a scale and time dependent dispersivity used for contaminant transport in aquifers and apply it to transient, unsaturated horizontal flow to develop similarity solutions for both constant solute concentration and solute flux boundary conditions. Through the use of a specific form of the water profile as used by Brutsaert [Water Resour Res 1968:4;785], the solute profiles can be reduced to a simple quadrature. We also derive a solution for the instantaneous injection of water and solute into a horizontal media for an arbitrary dispersivity. It is found that the solute concentration remains constant in both space and time as the water redistributes, suggesting that the solute does not disperse relative to the water.  相似文献   

8.
采用动力理论对地基-结构非线性相互作用体系的振动方程进行了定性分析.基于多线性随动强化模型,采用非线性有限元法求解了基础和地基土之间的水平刚度与摇摆刚度,建立了结构-地基非线性相互作用体系的力学模型.利用拉格朗日能量法推导了结构水平位移和扭转相耦合的振动方程.采用多尺度法研究了结构-地基相互作用体系的主共振.通过分析不...  相似文献   

9.
This paper presents an extensive investigation into the influence of key mechanical and geometrical parameters on horizontal impedance of square foundations resting on or embedded in a two-layer soil deposit. The parameters investigated are the ratio of shear-wave velocities, the thickness of the top layer, the depth of embedment and the degree of contact between the footing-sidewall with backfill-soil. The results are presented in the form of simple and versatile dimensionless graphs, which should prove to be useful in understanding the steady-state harmonic response of square foundations in layered soils due to horizontal excitation. The investigation was conducted using a rigorous boundary element algorithm incorporating isoparametric boundary elements. Higher order quadratic elements were used since they can model the wavy nature of the dynamic problem investigated more accurately.  相似文献   

10.
The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element–finite element coupling model, are provided in this paper. More precisely, vertical, horizontal, rocking and horizontal–rocking crossed dynamic stiffness and damping functions of single inclined piles and 2 × 2 and 3 × 3 pile groups with battered elements are presented in a set of plots. The soil is assumed to be a homogeneous viscoelastic isotropic half‐space and the piles are modeled as elastic compressible Euler–Bernoulli beams. The results for different pile group configurations, pile–soil stiffness ratios and rake angles are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Unbonded fibre‐reinforced elastomeric isolator (U‐FREI) is relatively new seismic base isolator in which fibre layers are used as reinforcement to replace steel shims as are normally used in conventional isolators. Further, the top and bottom end steel connector plates of conventional isolators are also removed. In general, the horizontal response of U‐FREI is nonlinear because of reduction in contact area due to rollover deformation and reduction in shear modulus of isolator under large deformation. Thus, evaluation of horizontal stiffness of U‐FREI is a challenging problem. Most previous studies were focused on the investigation of horizontal response of scaled models of U‐FREIs with low shape factors. A few analytical approaches were suggested for predicting the horizontal response of U‐FREI; but their results were not in good agreement with experimental observations. In the present study, the horizontal responses of prototype U‐FREIs are evaluated under a constant vertical pressure and cyclic loading using both experiments and finite element analysis. Prototype U‐FREIs with different shear moduli and with different shape factors are considered. Finite element simulations of corresponding bonded FREIs are also performed under the same loadings as in U‐FREIs. A rational analytical approach including the influence of rollover deformation and simultaneous reduction in shear modulus is proposed as a basic analytical tool for predicting the horizontal stiffness of FREIs (both bonded and unbonded). It is in reasonably good agreement with the results obtained from experiments and numerical analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The general time-domain boundary element in cylindrical co-ordinates developed for the study of wave propagation in a layered half-space is extended to the response analysis of single piles under horizontal transient excitations. The pile is treated as a beam, and therefore, only the bending stiffness has to be considered in the analysis. As required by the non-axisymmetric nature of the problem, the soil is modelled by boundary (cylindrical) elements with the vertical, radial and tangential displacements as well as their corresponding tractions as independent variables. The characteristic matrices for the two different types of element can be formed in the usual manner, and they are combined to form the equation of motion for the whole system by virtue of compatibility and equilibrium conditions along the pile-soil interface. The transient responses of a pile under Heaviside loads are found to converge to the static values. Parametric studies are carried out to reveal the influences of pile-soil stiffness ratio (Ep/Es) and soil layering.  相似文献   

13.
It is recognized that soil improvement techniques are not economically feasible for mitigation of liquefaction-induced lifeline damages because of the large areas served. Instead, it is more practical to execute an emergency action immediately after an earthquake in order to prevent or minimize possible lifeline failures caused by the soil liquefaction. Essential element in the implementation of such a plan is the real-time identification of liquefied sites, which can be successfully achieved by analyzing surface strong motion records. In this paper, the thresholds of two ground motion parameters—the peak surface velocity and horizontal shaking frequency of the ground—that are associated with the soil liquefaction are assessed utilizing the theory of one-dimensional wave propagation in linearly elastic medium. Obtained simple expressions for both parameters are used to estimate their ranges and are examined against several case histories. Minimum level of peak ground velocity (PGV) is verified by experimental data from shaking-table test. Linear relationships between amplitude ground motion parameters at liquefied-soil sites are also developed. Results suggest that liquefaction is likely to take place when PGV exceeds 0.10 m/s and that the upper bound of horizontal ground vibration frequency after liquefaction occurrence is 1.3–2.3 Hz.  相似文献   

14.
It has been shown that convective mixing in porous media flow is important for applications such as saltwater intrusion and geological storage of carbon dioxide. In the latter case, dissolution from the injected phase to the resident brine is assisted by convective mixing, which leads to enhanced storage security through reduced buoyancy. Here, we focus on the effect of horizontal barriers on the efficiency of convective mixing. Previous investigations of the effect of heterogeneity on mixing efficiency have focused on random permeability fields or barriers of small extent compared to the intrinsic finger wavelength. The effect of horizontal barriers of larger extent, such as mudstone inclusions or thin shale deposits, has not been given sufficient attention. We perform detailed numerical investigations to represent the continuous solution of this problem in semi-infinite domains with barriers arranged in a periodic manner. The results show that mass flux into the domain, which is a measure of the efficiency of redistribution of the solute, is inversely proportional to the barrier length and proportional to the horizontal and vertical aperture between the barriers, for the cases studied. The flow structure is complex, and it depends not only on the total area of barriers but also largely on the distribution of barriers. Therefore, neither simple analytical models nor simple upscaling methods that lack information about the flow paths, can be used to predict the behavior. However, we compute the effective vertical permeability by flow-based upscaling and show that it can be used to directly obtain a first-order approximation to the mass flux into the domain.  相似文献   

15.
The awareness and preservation of the vernacular heritage and traditional construction techniques and materials is crucial as a key element of cultural identity. However, vernacular architecture located in earthquake prone areas can show a particularly poor seismic performance because of inadequate construction practices resulting from economic restraints and lack of resources. The horizontal diaphragms are one of the key aspects influencing the seismic behavior of buildings because of their major role transmitting the seismic actions to the vertical resisting elements of the structure. This paper presents a numerical parametric study adopted to understand the seismic behavior and resisting mechanisms of vernacular buildings according to the type of horizontal diaphragm considered. Detailed finite element modeling and nonlinear static (pushover) analyses were used to perform the thorough parametric study aimed at the evaluation and quantification of the influence of the type of diaphragm in the seismic behavior of vernacular buildings. The reference models used for this study simulate representative rammed earth and stone masonry vernacular buildings commonly found in the South of Portugal. Therefore, this paper also contributes for a better insight of the structural behavior of vernacular earthen and stone masonry typologies under seismic loading.  相似文献   

16.
Integrating the deflections of the vertical along the flight line can yield geoid profiles which are valuable in the study of geodesy and geophysics, fortunately, the deflections can be measured directly by vector gravimetry. Airborne vector gravimetry using a Strapdown Inertial Navigation System and the Global Navigation Satellite System (SINS/GNSS) has shown promising results in previous studies. However, the quality of the SINS and GNSS is a major limitation; in particular, the attitude errors induced by the gyros will result in large measurement errors to the horizontal components of the gravity disturbance, and these measurement errors represent the behavior of low-frequency trend. An airborne vector gravimetry method used to remove the bias and low-frequency trends in the gravity disturbance estimated for each survey line has been developed. This method uses the horizontal components of the gravity disturbance computed from EGM2008 (Earth Gravitational Model 2008) as a reference. Firstly, the horizontal measurement results obtained from the gravimeter are divided into high- and low-frequency components according to the resolution of the EGM2008, and then, the bias and low-frequency trends of the low-frequency components are corrected using a linear fit to the EGM2008 reference data. Finally, the ultimate results can be acquired after combining the high-frequency components and the corrected low-frequency components. The data used was obtained from the SGA-WZ, which is the first strapdown airborne gravimeter developed in China. The results of this method are promising. The internal accuracy of the gravity disturbance's horizontal components for repeated survey lines exceeds 3.5 mGal, and the corresponding resolution is approximately 4.8 km based on 160-s data smoothing and an airplane averaging speed of approximately 216 km/h. After applying the WCF (Wavenumber Correlation Filter), the internal accuracy of the horizontal components exceeds 2 mGal. This can satisfy the requirement of the application in geodesy and solid earth geophysics.  相似文献   

17.
This paper proposes a dynamic centrifuge model test method for the accurate simulation of the behaviours of a liquid storage tank with different types of foundations during earthquakes. The method can be used to determine the actual stress conditions of a prototype storage‐tank structure. It was used in the present study to investigate the soil‐foundation‐structure interactions of a simplified storage tank under two different earthquake motions, which were simulated using a shaking table installed in a centrifuge basket. Three different types of foundations were considered, namely, a shallow foundation, a slab on the surface of the ground connected to piles and a slab with disconnected piles. The test results were organised to compare the ground surface and foundation motions, the slab of foundation and top of structure motions and the horizontal and vertical motions of the slab, respectively. These were used to establish the complex dynamic behaviours of tank models with different foundations. The effects of soil–foundation–structure interaction with three foundation conditions and two different earthquake motions are focused and some important factors, that should be considered for future designs are also discussed in this research. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
<正>Ground motion records are often used to develop ground motion prediction equations(GMPEs) for a randomly oriented horizontal component,and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis.The former is needed for seismic hazard assessment,whereas the latter can be important for assessing structural responses under multi-directional excitations.However,a comprehensive investigation of the pseudo-spectral acceleration(PSA) and of GMPEs conditioned on different axes is currently lacking.This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane,and correlation of the PSA along the principal directions on the horizontal plane.For these,three sets of strong ground motion records,including intraplate California earthquakes,inslab Mexican earthquakes,and interface Mexican earthquakes,are used.The results indicate that one of the principal directions could be considered as quasi-vertical.By focusing on seismic excitations on the horizontal plane,the statistics of the angles between the major response axis and the major principal axis are obtained;GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component;and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.  相似文献   

19.
The horizontal and vertical sand mass fluxes in aeolian sand transport are investigated in a wind tunnel by PTV (particle tracking velocimetry). According to the particle velocity and volume fraction of each individual particle from PTV images, the total horizontal sand mass flux, the horizontal mass fluxes of ascending and descending sand particles, and upward and downward vertical sand fluxes are analyzed. The results show that the horizontal mass fluxes of ascending and descending sand particles generally decrease with the increase of height and can be described by an exponential function above about 0.03 m height. At the same friction velocity, the decay heights of the total horizontal sand mass flux and the horizontal mass fluxes of ascending and descending sand particles are very similar. The proportion of horizontal mass flux of ascending sand particles is generally about 0.3–0.42, this means the horizontal mass flux of descending sand particles makes an important contribution to the total horizontal sand mass flux. Both the upward and downward vertical sand mass fluxes generally decrease with height and they are approximately equal at the same height and friction velocity. The relation between upward (or downward) vertical sand mass flux and horizontal sand mass flux can be described by a power function. The present study is used to help understand the transport of ascending and descending sand particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The inelastic responses of framed structures and seismic isolation systems undergoing biaxial (horizontal) shaking are coupled. In existing models for biaxial coupling of hysteretic behavior, the smoothness (or ‘knee') of the transition from elastic to yielding behavior cannot be modified without affecting the shape of the yield surface. This paper presents a model for coupled biaxial hysteretic behavior in which the knee from pre‐yield to post‐yield can be adjusted while maintaining an isotropic yield surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号