首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The present paper aims to contribute to the knowledge concerning the seismic assessment of load bearing masonry buildings with reinforced concrete slabs. The final goal of the present research was to propose a simple, yet accurate, methodology to assess the seismic safety of existing masonry buildings. The methodology here presented was based on the so-called ICIST/ACSS methodology with major improvements such as the extension to load bearing masonry wall buildings and the consideration of the effects of one of the most common strengthening solutions for masonry walls, here referred to as reinforced plastering mortar, as well as the possibility of considering four levels of increasing refinement: global, by alignment, by wall panel and by wall element. An extended research was performed on the existing methodologies to evaluate the seismic structural risk of load bearing masonry buildings, briefly describing methodologies similar to the one proposed, namely all of those that have in common the fact that they are based in the physical comparison between the resisting and acting shear forces at all storeys and along the two orthogonal horizontal directions. A case study is presented to check the applicability of the proposed methodology. The case study showed that the proposed methodology is relatively simple to apply and has a sufficiently good accuracy when compared with alternative methodologies. The degree of refinement of the analysis (global, by alignment, by wall panel and by wall element) must be taken into consideration and successively more complex analyses may be required when the results of simpler analyses are inconclusive.  相似文献   

2.
The results of shaking table tests of a series of 1:5 scale masonry building models have been used for the assessment of values of structural behavior factor q for masonry structures, seismic force reduction factors proposed for the calculation of design seismic loads by Eurocode 8, European standard for the design of structures for earthquake resistance. Six models have been tested, representing prototype buildings of two different structural configurations and built with two different types of masonry materials. The study indicated that the reduction of seismic forces for the design depends not only on the type of masonry construction system, but also on structural configuration and mechanical characteristics of masonry materials. It has been also shown that besides displacement and energy dissipation capacity, damage limitation requirement should be taken into account when evaluating the values of behavior factor. On the basis of analysis of experimental results a conclusion can be made, that the values at the upper limit of the proposed range of values of structural behavior factor q for unreinforced and confined masonry construction systems are adequate, if pushover methods are used and the calculated global ductility of the structure is compared with the displacement demand. In the case where elastic analysis methods are used and significant overstrength is expected, the proposed values are conservative. However, additional research and parametric studies are needed to propose the modifications.  相似文献   

3.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

4.
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads.Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers.This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada.The old historic center of Quebec City has been selected as a typical study area.The standard fragility analysis combines the inelastic spectral displacement,a structure-dependent earthquake intensity measure,and the building damage state correlated to the induced building displacement.The proposed procedure consists of a three-step development process:(1) mechanics-based capacity model,(2) displacement-based damage model and(3) seismic demand model.The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings.Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER.Hazus shows the highest probability of the occurrence of no to slight damage,whereas the highest probability of extensive and complete damage is predicted with ELER.This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.  相似文献   

5.
多层错层砖砌体房屋抗震分析   总被引:1,自引:0,他引:1  
本文根据典型的东西和南北错层单元模型,按不同的错层高度、不同收层情况和不同理置深度的实际房屋情况,分析建立了错层房层和相应的等效规整房屋模型,采用板壳单元,用有限元方法计算了这些模型的动力特征和在地震作用下的墙肢剪应力分布,经过对比分析得到了一些错层房屋墙应力的分布规律。根据错层房屋的受力特点,文中提出了相应的加强构造措施,结构布置要求和错层房屋的抗震计算模型等具体建议。  相似文献   

6.
Performance of masonry buildings during the Emilia 2012 earthquake   总被引:2,自引:2,他引:0  
The earthquake sequence started on May \(20\) th 2012 in Emilia (Italy) affected a region where masonry constructions represent a large part of the existing building stock and the construction of new modern masonry buildings is a common practice. The paper is focused on the performance of common architectural configurations, typical for residential or business use. The large majority of old masonry buildings is made of fired clay bricks. The seismic performance of these buildings is particularly interesting since major past earthquakes in Italy affected areas with mainly stone masonry structures. Apart from examples showing systematic or peculiar structural deficiencies governing the vulnerability of several buildings, the overall seismic performance of these structures to repeated shaking, with PGA as large as 0.25–0.3 g was rather good, despite the major part of them were only conceived for carrying vertical loads. In fact, seismic design is mandatory in the area only since 2003. Modern low-rise masonry buildings erected after this date and incorporating seismic design and proper detailing resulted in most cases practically undamaged. The examples reported in the paper allow an evaluation of the superior performance of seismically designed modern masonry buildings in comparison to older ones.  相似文献   

7.
由于施工、材料、改建等因素的影响,自建民居往往达不到抗震设防的目标.本文以玉溪市某社区房屋为例,利用砖混结构的震害预测计算方法,探讨了加层及底层改建的做法对自建民居抗震性能的影响.计算分析结果表明:加层会减低民居的抗震性能,层数越多,抗震性能越弱,而底层改建更明显地降低了民居的抗震性能.  相似文献   

8.
For seismic analysis of unreinforced masonry (URM) buildings characterized by a box-like behavior, a widely accepted model is based on the equivalent frame idealization of walls. The equivalent frame model uses 1D elements to represent the vertical piers and horizontal spandrels which are connected by rigid nodes. The mechanical characterization of the elements is one of the crucial aspects to predict reasonably the building seismic behavior. Through the comparison with pseudo-static and dynamic experimental tests performed on two-story full-scale buildings, this paper validates the frame modeling in the OpenSees framework, which includes a fiber-section force-based beam element for the axial-flexural behavior, coupled with a cyclic shear-deformation phenomenological law.  相似文献   

9.
Studies oriented to restoration and conservation of historical monumental buildings have recourse to structural analysis as a way to investigate the genuine structural features of the construction, to better understand its present condition and actual causes of existing damage, to estimate its safety conditions and to determine necessary remedial measures. Based on this background, this paper discusses on the seismic vulnerability of masonry fortresses by means of an analysis methodology based on three different analytical procedures, according to an increased knowledge of the structure. As a relevant case study the Albornoz fortress, a 14th stone masonry construction located in central Italy, was selected. Initially, the strategy proposed to perform this task was aimed at testing and developing an expeditious and non-destructive procedure to evaluate both the seismic vulnerability and the main mechanical properties of the different masonry typologies. The macroscale structural behavior of the fortress was then evaluated through a nonlinear static analysis (pushover) and a more simple approach based on the kinematic theorems of the limit analysis. From this point of view, by comparing the capacity of the construction to withstand lateral loads with the expected demands resulting from seismic actions, these methods provided a highly effective means of verifying the safety of the masonry structure and its vulnerability to extensive damage and collapse.  相似文献   

10.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

11.
Seismic behaviour of masonry buildings, built of low compressive strength units, is discussed. Although such materials have already been tested and approved for use from mechanical and thermal insulation point of view, the knowledge regarding their structural behaviour is still lacking. In order to investigate the resistance and deformation capacity of this particular type of masonry construction in seismic conditions, a series of eight walls and model of a two-storey full scale confined masonry building have been tested by subjecting the specimens to cyclic shear loads. All tests were conducted under a combination of constant vertical load and quasi static, cyclically imposed horizontal load. The behaviour of tested specimens was of typical shear type. Compared with the behaviour of plain masonry walls, the presence of tie-columns resulted into higher resistance and displacement capacity, as well as smaller lateral resistance degradation. The response of the model was determined by storey mechanism with predominant shear behaviour of the walls and failure mechanism of the same type as in the case of individual confined masonry walls. Adequate seismic behaviour of this particular masonry structural type can be expected under the condition that the buildings are built as confined masonry system with limited number of stories.  相似文献   

12.
This study focuses on the evaluation of seismic safety of unreinforced masonry buildings in Turkey by using fragility curves generated for two behavior modes of load bearing walls: in-plane and out-of-plane. During generation of fragility curves, a force-based approach has been used. There exist two limit states in terms of base shear strength for in-plane behavior mode and flexural strength for out-of-plane behavior mode. To assess the seismic vulnerability of unreinforced masonry buildings in Turkey, fragility curves generated for in-plane behavior were verified by the observed damage during the 1995 Dinar (Turkey) earthquake and fragility curves generated for out-of-plane behavior were verified by the observed damage during the 2010 Elaz?? (Turkey) earthquake. The verification results reveal that the proposed fragility-based procedure can provide an alternative for the seismic safety evaluation of unreinforced masonry buildings in Turkey. Using this procedure, it becomes possible to investigate a large population of masonry buildings located in regions of high seismic risk in a short period of time. The obtained results are valuable in the sense that they can be used as a database during the development of strategies for pre-earthquake planning and risk mitigation for earthquake prone regions of Turkey.  相似文献   

13.
This paper presents a masonry panel model for the nonlinear static and dynamic analysis of masonry buildings suitable for the seismic assessment of new and existing structures. The model is based on an equivalent frame idealization of the structure and stems from previous research on force‐based frame elements. The element formulation considers axial, bending, and shear deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic section law that accounts for the shear panel response is coupled, through equilibrium between shear and bending forces along the element, with a fiber‐section model that accounts for the axial and bending responses. The proposed panel model traces with a low computational burden and numerical stability the main aspects of the structural behavior of masonry panels and is suitable for analyses of multi‐floor buildings with a relatively regular distribution of openings and with walls and floors organized to grant a box‐like behavior under seismic loads. The model capabilities are validated though analyses of simple unreinforced masonry panels and comparisons with published experimental results. The model accuracy is strongly dependent on the fiber and shear constitutive laws used. However, the formulation is general, and laws different from those employed in this study are easily introduced without affecting the model formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
On March 1993 an earthquake of magnitude Ms = 5·5 shook Pyrgos, a town in Western Peloponnissos, one of the most seismic prone areas in Greece. The damage induced to modern reinforced concrete buildings was rather light in contrast to the damage induced to historic and traditional buildings of adobe, stone or brick masonry which was severe. In order to study the causes of structural damage, detailed data are collected from a rather large statistical sample of 1023 masonry buildings and 22 reinforced concrete framed buildings with visible damage. For each building the number of storeys, the material of construction, as well as the type and the degree of damage are recorded. In addition, consideration is given to the site of the building within the town and the corresponding soil conditions. For reinforced concrete buildings, damage occured mostly in areas with relatively high estimated spectral accelerations and fundamental soil periods of vibration close to those of the buildings. Nevertheless, further analysis is required to explain the selective damage of a very small number of buildings. For masonry houses, the effect of soil conditions is more systematic. Moreover, the effects of the number of storeys as well as the age and material of construction appear to be dominant.  相似文献   

15.
The determination of mechanical properties of masonry walls is a fundamental pre‐requisite for the characterization of the seismic response of traditional buildings, which helps on the definition of adequate rehabilitation and strengthening procedures. This paper presents a testing campaign carried out in the Cedros region of Faial Island, Azores, hit by the July 98 earthquake, aiming at the determination of physical and mechanical properties of stone masonry walls, namely the mass density and Young's modulus. The paper describes the developed testing techniques as a contribution to the study and the preservation of traditional masonry buildings. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Many surviving ancient monuments are freestanding stone masonry structures, which appear to be vulnerable to horizontal dynamic loads such as earthquakes. However, such structures have stood for thousands of years despite numerous historic earthquakes. This study proposes a scaled-down dynamic centrifuge modelling test to study how these masonry structures resist seismic loading. The test is proposed for seismic risk assessments to evaluate risk of damage from a future seismic event. The seismic behaviour of a 3-storey, freestanding stone block structure has been modelled and tested within a centrifuge. Models were made at 3 different scales and dynamic tests were conducted using different centrifugal acceleration fields so that the behaviours could be transformed to an equivalent full-scale prototype and compared. Data from 2 earthquakes and a sweeping signal were used to simulate the effects of earthquake ground motion within the centrifuge. The acceleration and frequency responses at each storey height of the model were recorded in different centrifugal acceleration fields. Similar behaviours appeared when the results of the small-scale models were transformed to a full-size prototype scale. This confirms that the seismic behaviour of stone masonry structures can be predicted using scaled-down models.  相似文献   

17.
Typical low-rise masonry buildings consist of unreinforced masonry (URM) walls covered with various timber roof configurations generally supported or finished by masonry gables. Post-earthquake observations and experimental outcomes highlighted the large vulnerability of the URM gables to the development of overturning mechanisms, both because of the inertial out-of-plane excitation and the in-plane timber diaphragm deformability. This paper presents the static and dynamic experimental seismic performance of three full-scale roofs tested via quasi-static cyclic and shake table tests. Two of them were tested as part of a whole full scale one-storey and two-storey building. A single-degree-of-freedom (SDOF) numerical model is calibrated against experimental data and proposed for the analysis of this roof typology's dynamic behaviour. Several sets of analyses were conducted to assess the vulnerability of these structural components and to study the effect of the whole building's characteristics (eg, number of storeys and structural stiffness and strength) on the seismic performance of this roof typology.  相似文献   

18.
A simplified numerical model was used to investigate the out‐of‐plane seismic response of vertically spanning unreinforced masonry (URM) wall strips. The URM wall strips were assumed to span between two flexible diaphragms and to develop a horizontal crack above the wall mid‐height. Three degrees of freedom were used to accommodate the wall displacement at the crack height and at the diaphragm connections, and the wall dynamic stability was studied. The equations of dynamic motion were obtained using principles of rocking mechanics of rigid bodies, and the formulae were modified to include semi‐rigid wall behaviour. Parametric studies were conducted that included calculation of the wall response for different values of diaphragm stiffness, wall properties, applied overburden, wall geometry and earthquake ground motions. The results of the study suggest that stiffening the horizontal diaphragms of typical low‐rise URM buildings will amplify the out‐of‐plane acceleration demand imposed on the wall and especially on the wall–diaphragm connections. It was found that upper‐storey walls connected to two flexible diaphragms had reduced stability for applied earthquake accelerograms having dominant frequency content that was comparable with the frequency of the diaphragms. It was also found that the applied overburden reduced wall stability by reducing the allowable wall rotations. The results of this study suggest that the existing American Society of Civil Engineers recommendations for assessment of vertically spanning walls overestimate the stability of top‐storey walls in multi‐storey buildings in high‐seismic regions or for walls connected to larger period (less stiff) diaphragms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
汶川地震中极震区砌体结构教学楼典型震害分析   总被引:5,自引:3,他引:2  
汶川8.0级大地震造成了巨大的损失,大量学校建筑遭受严重破坏,其中大部分是砌体结构教学楼。在此次地震中,极震区北川县擂鼓镇城区内的初中、小学和幼儿园等砌体结构教学楼的破坏极其严重,结构特征和震害现象十分典型。本文详细地介绍了擂鼓镇城区内5栋砌体结构教学楼的结构构造特点和震害现象特征,同时,总结归纳了砌体结构教学楼的典型震害并分析了震害原因;讨论并分析了建筑含墙率、开间大小、高宽比等因素对建筑的抗震能力的影响;通过结构易损性分析方法对教学楼在不同烈度下的破坏状态进行了计算,并与实际震害进行了对比分析;最后,为灾后教学楼的重建工作提出了建议。  相似文献   

20.
In regions of low to moderate seismicity in North America, reinforced masonry structures are mostly partially grouted. The behavior of such structures under lateral seismic loads is complicated because of the interaction of the grouted and ungrouted masonry. As revealed in past experimental studies, the performance of partially grouted masonry (PGM) walls under in-plane cyclic lateral loading is inferior to that of fully grouted walls. However, the dynamic behavior of a PGM wall system under severe seismic loads is not well understood. In this study, a full-scale, one-story, PGM building designed for a moderate seismic zone according to current code provisions was tested on a shake table. It was shown that the structure was able to develop an adequate base shear capacity and withstand two earthquake motions that had an effective intensity of two times the maximum considered earthquake with only moderate cracking in mortar joints. However, the structure eventually failed in a brittle manner in a subsequent motion that had a slightly lower effective intensity. A detailed finite element model of the test structure has been developed and validated. The model has been used to understand the distribution of the lateral force resistance among the wall components and to evaluate the shear-strength equation given in the design code. The code equation has been found to be adequate for this structure. Furthermore, a parametric study conducted with the finite element model has shown that the introduction of a continuous bond beam right below a window opening is highly beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号