首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 10?2 and the mean energy per neutral hydrogen atom pair is calculated.  相似文献   

2.
A recent survey of the fine-structure excitation of neutral carbonreveals that the interstellar medium in the Galactic plane exhibits athermal pressure, nT/k, that ranges from about 103to 104cm-3K from one location to the next, with occasional excursions in excess of about 105 cm-3K. The large excitations for small amounts of gas indicate that some regions are either subjected to shocks or must be pressurized within time scales much shorter than the time needed to reach thermal equilibrium. These rapidfluctuations probably arise from the cascade of macroscopic mechanical energyto small scales through a turbulent cascade. One consequence of thiseffect is that changes in gas temperature can arise from near adiabaticcompressions and expansions, and this may explain why investigations of21-cm emission and absorption reveal the presence of hydrogen attemperatures well below the expected values derived from the balance ofvarious known heating and cooling processes.  相似文献   

3.
The 4050 Å band of C3 was observed with Keck/HIRES echelle spectrometer during the Deep Impact encounter. We perform a 2-dimensional analysis of the exposures in order to study the spatial, spectral, and temporal changes in the emission spectrum of C3. The rotational population distribution changes after impact, beginning with an excitation temperature of ~45 K at impact and increasing for 2 hr up to a maximum of 61±5 K. From 2 to 4 hours after impact, the excitation temperature decreases to the pre-impact value. We measured the quiescent production rate of C3 before the encounter to be 1.0×1023 s?1, while 2 hours after impact we recorded a peak production rate of 1.7×1023 s?1. Whereas the excitation temperature returned to the pre-impact value during the observations, the production rate remained elevated, decreasing slowly, until the end of the 4 hr observations. These results are interpreted in terms of changing gas densities in the coma and short-term changes in the primary chemical production mechanism for C3.  相似文献   

4.
A space charge sheath is found to be formed whenever a high-velocity magnetized plasma stream penetrates a gas cloud. The sheath is always located at the head of the plasma stream, and its thickness is very small compared to the length of the plasma stream. Soon after the sheath is formed it quickly slows down to the Alfvén critical velocity. The plasma behind the sheath continues to move at higher velocity until the whole plasma stream is retarded to the critical velocity. In the interaction at gas density 1019 m–3 the sheaths are observed to be accompanied by a single loop of current with current density of 105 Å m–2. Maximum potential in the sheath ranges between 50 and 200 V.Presently available models for the sheath may explain the initiation of the sheath formation. Physical processes like heating of the electrons and ionization of the gas cloud which come into play at a later stage of the interaction are not included in these models. These processes considerably alter the potential structure in the sheath region. A schematic model of the observed sheath is presented here.Experiments reveal a threshold value of the magnetic field for plasma retardation to occur. This seems to correspond to the threshold condition for excitation of the modified two-stream instability which can lead to the electron heating. The observed current are found sufficient to account for the plasma retardation at a gas density of 1017 m–3.  相似文献   

5.
Abstract— Thick spherical targets made of gabbro (R = 25 cm) and of steel (R = 10 cm) were irradiated isotropically with 1.6 GeV protons at the Saturne synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay in order to simulate the interaction in space of galactic cosmic‐ray (GCR) protons with stony and iron meteoroids. Proton fluences of 1.32 × 1014 cm?2 and 2.45 × 1014 cm?2 were received by the gabbro and iron sphere, respectively, which corresponds to cosmic‐ray exposure ages of about 1.6 and 3.0 Ma. Both artificial meteoroids contained large numbers of high‐purity target foils of up to 28 elements at different depths. In these individual target foils, elementary production rates of radionuclides and rare gas isotopes were measured by x‐ and γ‐spectrometry, by low‐level counting, accelerator mass spectrometry (AMS), and by conventional rare gas mass spectrometry. Also samples of the gabbro itself were analyzed. Up to now, for each of the experiments, ~500 target‐product combinations were investigated of which the results for radionuclides are presented here. The experimental production rates show a wide range of depth profiles reflecting the differences between low‐, medium‐, and high‐energy products. The influence of the stony and iron matrices on the production of secondary particles and on particle transport, in general, and consequently on the production rates is clearly exhibited by the phenomenology of the production rates as well as by a detailed theoretical analysis. Theoretical production rates were calculated in an a priori way by folding depth‐dependent spectra of primary and secondary protons and secondary neutrons calculated by Monte Carlo techniques with the excitation functions of the underlying nuclear reactions. Discrepancies of up to a factor of 2 between the experimental and a priori calculated depth profiles are attributed to the poor quality of the mostly theoretical neutron excitation functions. Improved neutron excitation functions were obtained by least‐squares deconvolution techniques from experimental thick‐target production rates of up to five thick‐target experiments in which isotropic irradiations were performed. A posteriori calculations using the adjusted neutron cross sections describe the measured depth profiles of all these simulation experiments within 9%. The thus validated model calculations provide a basis for reliable physical model calculations of the production rates of cosmogenic nuclides in stony and iron meteorites as well as in lunar samples and terrestrial materials.  相似文献   

6.
The most remarkable discovery of recent years in the study of the interstellar medium has been the identification of spatial structures of sizes down to those of a few times the mean Earth-Sun distance (an Astronomical Unit, AU). Solar-System Scale microstructures are detected in cool clouds (temperatures ∼100 K in which the hydrogen number density is of order 102cm-3, and which are about a parsec in extent (1 parsec =2 × 105 AU).Some microstructures are believed to be much denser (by factors of about 100) than the ambient gas, and therefore significantly over-pressured. They are necessarily short-lived, and dissipate on timescales ∼10 y. They do not originate in conventional nonmagnetic hydrodynamic processes, and their existence indicates that our knowledge of interstellar dynamics has been incomplete. Here, we summarize the evidence for the existence of microstructures, and propose that any that are significantly over pressured are formed in post shock regions of high magnetic pressure due to the excitation of slow-mode magnetosonic waves by the nonlinear steepening of disturbances generated by the Kelvin-Helmholtz and other instabilities. Less over pressured microstructures can be formed by the same nonlinear processes operating in a region in which the magnetic contribution to the pressure is less dominant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Abstract— A purely physical model based on a Monte Carlo simulation of galactic cosmic ray (GCR) particle interaction with meteoroids is used to investigate neutron interactions down to thermal energies. Experimental and/or evaluated excitation functions are used to calculate neutron capture production rates as a function of the size of the meteoroid and the depth below its surface. Presented are the depth profiles of cosmogenic radionuclides 36Cl, 41Ca, 60Co, 59Ni, and 129I for meteoroid radii from 10 cm up to 500 cm and a 2π irradiation. Effects of bulk chemical composition on n‐capture processes are studied and discussed for various chondritic and lunar compositions. The mean GCR particle flux over the last 300 ka was determined from the comparison of simulations with measured 41Ca activities in the Apollo 15 drill core. The determined value significantly differs from that obtained using equivalent models of spallation residue production.  相似文献   

8.
O. Ashihara 《Icarus》1978,35(3):369-384
The photoelectron fluxes in cometary atmospheres are calculated by a Monte Carlo method. This is the first quantitative model calculation of this kind. A pure H2O atmosphere is assumed with a sublimation rate of 1030 molecules sec?1 at 1 AU. Discussions of the energetics of electron gas and of the elementary collisional processes in determining the fluxes largely concern this water atmosphere. Influences on the photoelectron fluxes are also investigated for CO, another possible constituent. The excitation rate of the 1D level of atomic oxygen in electron impacts is evaluated. It is highly improbable that the photoelectrons are responsible for the observed 6300 Å emission of the order of 1 kR at a heliocentric distance of 1 AU. The structure of the heat equation for thermal electrons is analyzed and a drastic change of the plasma behavior within the coma region is expected.  相似文献   

9.
Values of the proton collisional excitation and deexcitation cross sections for all transitions between the Fe+12 ground configuration levels are calculated using semi-classical Coulomb excitation theory. Rate constants for these processes are then derived for coronal temperatures and are shown to be comparable in all cases to the corresponding electron rate constants.  相似文献   

10.
The processes by which energetic electrons lose energy in a weakly ionized gas of carbon dioxide are discussed and a consistent set of electron impact cross-sections is compiled. Calculations of the excitations, ionizations and neutral particle heating produced by the absorption of electrons in carbon dioxide gas are carried out for fractional ionizations ranging from 10?2 to 10?6.  相似文献   

11.
Elastic scattering and excitation transfer collision cross-sections in O(1S)-O(3P) collisions are calculated. These cross-sections are needed in determining the degree of thermalization of the O(1S) atoms in the nighttime thermosphere. A formula is given for the rate coefficient for the production of an O(1S) atom with a specific energy in collisions involving an O(1S) atom of a given initial energy and the ground state O(3P) atoms of a thermal gas. Effective elastic scattering and excitation transfer cross-sections are defined and calculated to be 1.71 × 10?15 cm2 and 6.67 × 10?16 cm2 respectively at a relative collision energy of 0.41 eV.  相似文献   

12.
A method of time series analysis termed impulse response estimation is described. The method is applied to simultaneous ground based photometry measurements of the N2+ ING band at 4278Å and the 5577Å line emission in order to estimate the response in 5577Å to a discrete impulse in excitation rate.From these impulse response estimates the contribution from indirect excitation processes to the O(1S) state is estimated to be of the order of 80% and the lifetime of the associated intermediate species to be approximately 0.1 s. Effective lifetimes for the O(1S) excited state are obtained in the range 0.49–0.86 s with a distribution showing a sharp cut-off at 0.8 s and a mean of 0.71 s.  相似文献   

13.
The sample of nearby LIRGs and ULIRGs for which dense molecular gas tracers have been measured is building up, allowing for the study of the physical and chemical properties of the gas in the variety of objects in which the most intense star formation and/or AGN activity in the local universe is taking place. This characterisation is essential to understand the processes involved, discard others and help to interpret the powerful starbursts and AGNs at high redshift that are currently being discovered and that will routinely be mapped by ALMA. We have studied the properties of the dense molecular gas in a sample of 17 nearby LIRGs and ULIRGs through millimeter observations of several molecules (HCO+, HCN, CN, HNC and CS) that trace different physical and chemical conditions of the dense gas in these extreme objects. In this paper we present the results of our HCO+ and HCN observations. We conclude that the very large range of measured line luminosity ratios for these two molecules severely questions the use of a unique molecular tracer to derive the dense gas mass in these galaxies.  相似文献   

14.
The excitation of the 2s22p2 ground configuration of Caxv is calculated for coronal densities and temperatures. The calculations include electron and proton excitation of the forbidden transitions and electron excitation via the first excited (2s2p3) configuration. It is shown that measurements of the line intensity ratio I( 5694)/I( 5446) are in good agreement with the predictions. The line to continuum observations for limb flares and coronal condensations are discussed. It is suggested that the calcium abundance in condensations is enhanced owing to diffusion processes.Present address: Department of Astronomy, University of Texas, Austin, Texas, U.S.A.  相似文献   

15.
The propagation of plane, cylindrical, and spherical waves in a thermally unstable gas–dust medium has been simulated numerically. As applied to the photodissociation regions near O and B stars, we take into account the interaction of ultraviolet radiation with dust grains and large polycyclic aromatic hydrocarbon molecules as well as the gas cooling through the excitation of СII ions and OI atoms and the deexcitation of rotational levels of CO molecules. The instability regions have been determined. The perturbation growth times corresponding to them are ~103?105 yr. We show that wave breaking occurs irrespective of the geometry of motion, while a perturbation in the form of a single pulse gives rise to a sequence of shock waves. The post-shock gas velocity is approximately 0.1?0.5 of the sound velocity, so that the autowaves can contribute noticeably to the observed velocity dispersion of the gas near the boundaries of HII regions. Two-dimensional simulations suggest that the presence of multiple shocks in a thermally unstable medium can accelerate significantly the destruction of preexisting isolated condensations.  相似文献   

16.
We study the nonstationary recombination of hydrogen in the atmosphere of SN 1987A by taking into account ion-molecular processes. The hydrogen excitation due to nonstationary recombination is shown to be enough to explain the observed hydrogen lines in a time interval until day 30 in the absence of additional excitation mechanisms. Thus, the problem of a deficit in the hydrogen excitation that has recently been found in modeling the hydrogen spectrum of SN 1987A at an early photospheric stage by assuming statistical ionization equilibrium is resolved. The mass of the radioactive 56Ni with a spherically symmetric distribution in the outer layers is shown to be close to 10?6 M . Our model predicts the appearance of a blue peak in the Hα profile between days 20 and 30. This peak bears a close similarity to the observed peak known as the Bochum event. The presence of this peak in the model is attributable to nonstationary recombination and to a substantial contribution of hydrogen neutralization involving H? and H2.  相似文献   

17.
We report the first detection of molecular hydrogen emission in the vicinity of a Wolf-Rayet star and nebula. The spatial distribution of the excited molecular gas is filamentary and is not correlated with the distribution of the ionised gas as traced by optical emission lines. The typical H2 surface brightness in the filaments is 5× 10–5 ergs s–1 cm–2 str–1. We demonstrate that the excitation mechanism can be shocks or fluorescence from the strong ultraviolet flux of the WR star.  相似文献   

18.
Here we present the results of panoramic and long-slit observations of eight ULX nebular counterparts performed with the 6m SAO telescope. In two ULX nebulae (ULXNe) we detected for the first time signatures of high excitation ([O III]λ5007 / Hβ > 5). Two of the ULXs were identified with young (T ~ 5–10 Myr) massive star clusters. Four of the eight ULXNe show bright high-excitation lines. This requires existence of luminous (~ 1038 ÷ 1040 erg s?1) UV/EUV sources coinciding with the X-ray sources. The other 4 ULXNe require shock excitation of the gas with shock velocities of 20–100 km s ?1. However, all the studied ULXNe spectra show signatures of shock excitation, but even those ULXNe where the shocks are prevailing show presence of a hard ionizing source with a luminosity of at least ~ 1038 erg s?1. Most likely shock waves, X-ray and EUV ionization act simultaneously in all the ULXNe, but they may be roughly separated in two groups: shock-dominated and photoionization-dominated ULXNe. The ULXs have to produce strong winds and/or jets (~ 1039 erg s?1) for powering their nebulae. Both the wind/jet activity and the existence of a bright UV source are consistent with the suggestion that ULXs are high-mass X-ray binaries with supercritical accretion disks of the SS433 type.  相似文献   

19.
Gas processes affecting star formation are reviewed with an emphasis on gravitational and magnetic instabilities as a source of turbulence. Gravitational instabilities are pervasive in a multi-phase medium, even for sub-threshold column densities, suggesting that only an ISM with a pure-warm phase can stop star formation. The instabilities generate turbulence, and this turbulence influences the structure and timing of star formation through its effect on the gas distribution and density. The final trigger for star formation is usually direct compression by another star or cluster. The star formation rate is apparently independent of the detailed mechanisms for star formation, and determined primarily by the total mass of gas in a dense form. If the density distribution function is a log-normal, as suggested by turbulence simulations, then this dense gas mass can be calculated and the star formation rate determined from first principles. The results suggest that only 10-4 of the ISM mass actively participates in the star formation process and that this fraction does so because its density is larger than 105 cm-3, at which point several key processes affecting dynamical equilibrium begin to break down. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The European Space Agency (ESA) Rosetta spacecraft (Schulz, R., Alexander, C., Boehnhardt, H., Glassmeier, K.H. (Eds.) [2009]. “ROSETTA - ESA”) will encounter Comet 67P/Churyumov-Gerasimenko in 2014 and spend the next 18 months in the vicinity of the comet, permitting very high spatial and spectral resolution observations of the coma and nucleus. During this time, the heliocentric distance of the comet will change from ∼3.5 AU to ∼1.3 AU, accompanied by an increasing temperature of the nucleus and the development of the coma. The Microwave Instrument for the Rosetta Orbiter (MIRO) will observe the ground-state rotational transition (110-101) of H216O at 556.936 GHz, the two isotopologues H217O and H218O and other molecular transitions in the coma during this time (Gulkis, S. et al., [2007]. MIRO: Microwave Instrument for Rosetta Orbiter. Space Sci. Rev. 128, 561-597).The aim of this study is to simulate the water line spectra that could be obtained with the MIRO instrument and to understand how the observed line spectra with various viewing geometries can be used to study the physical conditions of the coma and the water excitation processes throughout the coma. We applied an accelerated Monte Carlo method to compute the excitations of the seven lowest rotational levels (101, 110, 212, 221, 303, 312, and 321) of ortho-water using a comet model with spherically symmetric water outgassing, density, temperature and expansion velocity at three different heliocentric distances 1.3 AU, 2.5 AU, and 3.5 AU. Mechanisms for the water excitation include water-water collisions, water-electron collisions, and infrared pumping by solar radiation.Synthetic line spectra are calculated at various observational locations and directions using the MIRO instrument parameters. We show that observations at varying viewing distances from the nucleus and directions have the potential to give diagnostic information on the continuum temperature and water outgassing rates at the surface of the nucleus, and the gas density, expansion velocity, and temperature of the coma as a function of distance from the nucleus. The gas expansion velocity and temperature affect the spectral line width and frequency shift of the line from the rest frequency, while the gas density (which is directly related to the outgassing rate) and the line excitation temperature determine the antenna temperature of the absorption and emission signal in the line profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号