首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
板块下的构造及地幔动力学   总被引:14,自引:4,他引:14  
最新的全球地幔地震层析资料揭示了岩石圈板片可以俯冲到核幔边界,超地幔羽可以从核幔边界上升到地壳上部形成热点。在大陆板块汇聚边界,地幔地震层析图像不仅显示了岩石圈板片的超深俯冲,还保存了拆沉的岩石圈“化石”残片的重要信息。从地幔深部所获取的新资料为全地幔“单层对流“的新模式提供了依据。在介绍上述全球构造研究新动向的基础上,本文强调了研究岩石圈板块必须了解板块下的构造,探索岩石圈板块的驱动力应该从“岩石圈动力学”升华到“地幔动力学”,并提出了大陆板块汇聚边界地幔动力学研究的新思考。  相似文献   

2.
超越板块构造——我国构造地质学要做些什么?   总被引:25,自引:1,他引:24  
金振民  姚玉鹏 《地球科学》2004,29(6):644-650
对近十年来全球构造学和构造地质学的重要进展进行了简要评述.30年前建立的全球构造理论改变了人们对地球及其演化的认识.作为固体地球统一理论的板块构造主要涉及刚性板块边界之间的变形、地震活动和火山作用.至今还没有完整理论阐明板块运动的驱动力和地幔对流机制.板块边界和板内变形等许多问题仍然无法回答.大陆岩石圈和大洋岩石圈在成分、厚度和力学强度方面有明显的差别, 因此现有板块构造不完全适合于大陆构造.大陆地壳和地幔流变学的综合研究是认识大陆构造和超越板块构造的最佳途径.流变学是大陆造山带几何学和动力学的桥梁.大陆岩石圈对构造作用、重力作用和热作用的响应在很大程度上取决于其流变强度.岩石圈流变性质是岩石圈分层和塑性流动的主导因素.大量透入性变形和巨型大陆造山带内部构造显示非刚性特征.大陆构造和力学行为主要由地壳强度而不是地幔强度所控制.从大陆岩石圈多层性和力学强度不均匀性表征看, 现在是抛弃传统“三明治”构造模式的时候了.面对地球系统科学和地球动力学新思维发展趋势, 多学科综合研究大陆构造(造山带)和加速高水平构造地质学人才的培养是我国构造地质学发展的最紧迫任务   相似文献   

3.
杨文采 《地质论评》2023,69(4):2023040007-2023040007
位于扬子克拉通内部的长江中下游构造带是一个特别的岩石圈构造带,它的成因一直是个谜。前人认为这与晚侏罗世伊佐奈琦洋向亚欧大陆的俯冲有关,但是为什么伊佐奈琦洋俯冲只在长江中下游构造带局部形成深入内陆的铁铜和多金属成矿带?为了解这个问题,必须从华南地区的地球物理数据来分析研究区的岩石圈和软流圈的属性特征,并进行类似构造的全球对比。根据地球物理调查结果可知,长江中下游构造带的地壳主要体现地堑的特征;岩石圈呈现低S波速与高密度,此类浅地幔动力学构造系统与洋中脊向大陆的俯冲模式接近。根据太平洋区域侏罗纪—白垩纪大洋磁异常条带与古地磁研究可以推测,长江中下游构造带与铁铜多金属成矿带的形成原因,应该是伊佐奈琦洋的洋中脊与洋脊三叉连向下扬子克拉通地幔的俯冲。当然,证明这个推测还需要更多的调查数据。  相似文献   

4.
杨文采 《地质论评》2023,69(5):1619-1627
位于扬子克拉通内部的长江中下游构造带是一个特别的岩石圈构造带,它的成因一直是个谜。前人认为这与晚侏罗世伊佐奈琦洋向亚欧大陆的俯冲有关,但是为什么伊佐奈琦洋俯冲只在长江中下游构造带局部形成深入内陆的铁铜和多金属成矿带?为了解这个问题,必须从华南地区的地球物理数据来分析研究区的岩石圈和软流圈的属性特征,并进行类似构造的全球对比。根据地球物理调查结果可知,长江中下游构造带的地壳主要体现地堑的特征;岩石圈呈现低S波速与高密度,此类浅地幔动力学构造系统与洋中脊向大陆的俯冲模式接近。根据太平洋区域侏罗纪—白垩纪大洋磁异常条带与古地磁研究可以推测,长江中下游构造带与铁铜多金属成矿带的形成原因,应该是伊佐奈琦洋的洋中脊与洋脊三叉连向下扬子克拉通地幔的俯冲。当然,证明这个推测还需要更多的调查数据。  相似文献   

5.
全球构造是百余年来国际地学界普遍关注的最重要研究领域之一,近十多年来研究不断取得新的重大进展;揭示出全球现今大洋中脊系统良好的定向性与等距性分布规律、地球各圈层不等速的西向运动规律及其他全球构造运动与地球自转的种种相关性;证明大陆板块内部存在不同类型的强烈陆内造山作用;发现了古今不同时期巨厚的大陆山根与岩石圈的去根作用等重要现象。当今全球构造研究出现若干新的趋势。在全球构造驱动力源与驱动机制研究方面,开始由单一动力驱动机制研究转入多种动力因子所构成地球动力系统的综合研究。大陆动力学中的山脉隆升过程与隆升机制、陆内造山机理、大陆岩石圈去根作用等已成为新的研究热点,中国颇具特色的大陆地质构造正吸引着越来越多国家众多地球科学家们的重视。  相似文献   

6.
本文将全球洋中脊系统作为研究整体,根据洋中脊的全球分布、运动学特征及其初始形成时与泛大陆的构造几何关系,将全球现今的洋中脊系统划分为内、外支洋中脊。外支洋中脊为探索者洋中脊-太平洋洋隆-东南印度洋中脊-西北印度洋中脊,起源于泛大洋及冈瓦纳大陆内部;内支洋中脊为西南印度洋中脊-大西洋中脊-北冰洋加科尔洋中脊,起源于泛大陆内部。两者之间通过俯冲带、转换断层以及弥散性板块边界实现全球板块构造在运动上的平衡,并保持地球的球形几何形态恒定。外支洋中脊在全球板块构造上造成泛大洋缩减,并持续被太平洋取代,直接推动了环太平洋俯冲带的形成;内支洋中脊造成大西洋盆、印度洋盆中生代以来持续扩张。中生代以来,外支洋中脊和内支洋中脊共同作用引起非洲板块、印度澳大利亚板块向北运动,新特提斯洋盆关闭,形成特提斯(阿尔卑斯山-喀尔巴阡山-扎格罗斯山-喜马拉雅山)碰撞造山带,并通过洋中脊扩张平衡了相关的岩石圈缩短。  相似文献   

7.
马晓min 《贵州地质》1989,6(3):261-267
全地幔对流因地球自转而具十二个规律性分布的旋涡单元,全球岩石圈因此表现出明显的旋涡构造特征。地球的演化与太阳系在银河系中的运动规律有关,周期性的银河天体撞击使规律性的全球旋涡构造受到银河年周期的撞击破坏。地球的构造发展表现为:旋涡运动—撞击破坏—旋涡恢复,周而复始,逐步演进。运用这个新假说,本文将全球海沟划分为五种成因四种类型,将全球大陆地台的活化也分成了五种成因类型。  相似文献   

8.
东北亚中生代火山岩研究若干问题的思考   总被引:14,自引:1,他引:13  
林强 《世界地质》1999,18(2):14-22
东北亚中生代火山岩包括大陆边缘北北东向线型火山岩带,以及大陆内部俄罗斯西伯利亚、蒙古、中国大兴安岭等面型火山岩带。它们是东北亚古亚洲洋构造域向太平洋构造域转换时期深部地幔地球化学过程以及东亚大陆与古太平洋板块相互作用的产物。对它们的研究涉及古生代古亚洲构造域闭合过程的深部地幔的动力学和地球化学演化历史,以及东亚大陆边缘由被动边缘向活动大陆边缘转换历史。古亚洲域大洋岩石圈向地幔深部潜入而引发的热地幔  相似文献   

9.
张进江  黄天立 《地球科学》2019,44(5):1705-1715
简述了大陆伸展构造的研究历史,并从基本概念、构造样式、变形机制和动力背景等方面对大陆伸展构造进行了综述.伸展是大陆构造一种主要类型,并以正断层为主形成多种构造样式,如地堑、裂谷、拆离断层和变质核杂岩等.大陆伸展的变形机制包括纯剪切、简单剪切及分层剪切模式,并由此产生对称与非对称构造.大陆伸展构造的地表表现形式主要为裂谷或变质核杂岩,两者的形成主要取决于岩石圈的流变学结构.大陆伸展的动力学背景主要包括地幔柱上涌、俯冲板片反转与俯冲带后撤、增厚地壳的重力垮塌以及走滑体系的派生拉张等.  相似文献   

10.
大陆动力学的过去、现在和未来——理论与应用   总被引:12,自引:2,他引:12  
近十年来大陆岩石圈流变学、板块下的构造和整个地幔运动、现代大陆变形动力学、大陆深俯冲动力学、"中下地壳的隧道流"、复合造山带和复合造山动力学、盆-山耦合与大陆增生、地幔物质和地幔动力学以及全球大陆科学钻探整合计划等大陆动力学研究的重要进展,表明大陆动力学是继"板块构造"之后固体地球科学发展的新的起点,建立大陆动力学新的理论体系以及为资源、能源、环境和预防地震灾害的人类需求服务,是大陆动力学发展的未来.  相似文献   

11.
中国大陆构造及动力学若干问题的认识   总被引:17,自引:2,他引:15  
中国(东亚)大陆受特提斯、古亚洲和太平洋构造体系的制约,具有复杂的地体构架和特殊的岩石圈结构。本文从地学前沿——大陆动力学的视野出发,围绕中国大陆构造及动力学四个方面的研究,总结已有的进展并提出新的思考:①中国大陆板块下的构造和整个地幔运动的构架:地震层析资料揭示西太平洋板片向西俯冲到东亚大陆之下,其倾角逐渐减小,最后近水平地插进400~600km深度的地幔过渡带中,成为箕状几何形态的超深俯冲板片。印度岩石圈板片超深俯冲至青藏高原之下~800km的深度,在喜马拉雅西构造结部位发生双向不对称深俯冲,印度岩石圈板片向东俯冲至东构造结东侧之下300~500km的深度。②中国大陆变质基底的再活化:中国大陆的大部分陆块未受显生宙以来构造、变质和岩浆事件的改造与激活,在冈瓦纳大陆北缘的印度陆块和阿拉伯陆块北缘还发育有形成于泛非期(530~470Ma)的造山带,其影响范围至高喜马拉雅、拉萨地体和三江地区。新生代的变质活化普遍出现在喜马拉雅、南迦巴瓦、拉萨地体和三江-缅甸地区,最新的变质年龄仅2~1Ma(南迦巴瓦)。③中国主要高压-超高压变质带的大地构造背景及深俯冲-折返机制:中国及邻区含榴辉岩的高压-超高压(HP/UHP)变质带有洋壳(深)俯冲和陆壳(深)俯冲之分。青藏高原中,大部分洋壳俯冲形成的高压/超高压变质带与原-古特提斯洋盆中诸多微陆块之间的小洋盆的汇聚碰撞有关,陆壳深俯冲作用有两种机制,它们分别是大陆块之间剪式碰撞和撕裂式岩石圈舌形板片的深俯冲。④中国大陆造山带的深部物质可经3类机制挤出,即深部地壳物质"牙膏式"挤出、侧向挤出和"挤压转换式"挤出。  相似文献   

12.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   

13.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

14.
Tonga and Mariana fore-arc peridotites, inferred to representtheir respective sub-arc mantle lithospheres, are compositionallyhighly depleted (low Fe/Mg) and thus physically buoyant relativeto abyssal peridotites representing normal oceanic lithosphere(high Fe/Mg) formed at ocean ridges. The observation that thedepletion of these fore-arc lithospheres is unrelated to, andpre-dates, the inception of present-day western Pacific subductionzones demonstrates the pre-existence of compositional buoyancycontrast at the sites of these subduction zones. These observationsallow us to suggest that lateral compositional buoyancy contrastwithin the oceanic lithosphere creates the favoured and necessarycondition for subduction initiation. Edges of buoyant oceanicplateaux, for example, mark a compositional buoyancy contrastwithin the oceanic lithosphere. These edges under deviatoriccompression (e.g. ridge push) could develop reverse faults withcombined forces in excess of the oceanic lithosphere strength,allowing the dense normal oceanic lithosphere to sink into theasthenosphere beneath the buoyant overriding oceanic plateaux,i.e. the initiation of subduction zones. We term this conceptthe ‘oceanic plateau model’. This model explainsmany other observations and offers testable hypotheses on importantgeodynamic problems on a global scale. These include (1) theorigin of the 43 Ma bend along the Hawaii–Emperor SeamountChain in the Pacific, (2) mechanisms of ophiolite emplacement,(3) continental accretion, etc. Subduction initiation is notunique to oceanic plateaux, but the plateau model well illustratesthe importance of the compositional buoyancy contrast withinthe lithosphere for subduction initiation. Most portions ofpassive continental margins, such as in the Atlantic where largecompositional buoyancy contrast exists, are the loci of futuresubduction zones. KEY WORDS: subduction initiation; compositional buoyancy contrast; oceanic lithosphere; plate tectonics; mantle plumes; hotspots; oceanic plateaux; passive continental margins; continental accretion; mantle peridotites; ophiolites  相似文献   

15.
《Gondwana Research》2016,29(4):1329-1343
Continental rifting to seafloor spreading is a continuous process, and rifting history influences the following spreading process. However, the complete process is scarcely simulated. Using 3D thermo-mechanical coupled visco-plastic numerical models, we investigate the complete extension process and the inheritance of continental rifting in oceanic spreading. Our modeling results show that the initial continental lithosphere rheological coupling/decoupling at the Moho affects oceanic spreading in two manners: (1) coupled model (a strong lower crust mechanically couples upper crust and upper mantle lithosphere) generates large lithospheric shear zones and fast rifting, which promotes symmetric oceanic accretion (i.e. oceanic crust growth) and leads to a relatively straight oceanic ridge, while (2) decoupled model (a weak ductile lower crust mechanically decouples upper crust and upper mantle lithosphere) generates separate crustal and mantle shear zones and favors asymmetric oceanic accretion involving development of active detachment faults with 3D features. Complex ridge geometries (e.g. overlapping ridge segments and curved ridges) are generated in the decoupled models. Two types of detachment faults termed continental and oceanic detachment faults are established in the coupled and decoupled models, respectively. Continental detachment faults are generated through rotation of high angle normal faults during rifting, and terminated by magmatism during continental breakup. Oceanic detachment faults form in oceanic crust in the late rifting–early spreading stage, and dominates asymmetric oceanic accretion. The life cycle of oceanic detachment faults has been revealed in this study.  相似文献   

16.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

17.
Structural forms of emplacement of crustal and mantle rigid sheets in collision zones of lithospheric plates in northeastern Asia are analyzed using formalized gravity models reflecting the rheological properties of geological media. Splitting of the lithosphere of moving plates into crustal and mantle constituents is the main feature of collision zones, which is repeated in the structural units irrespective of their location, rank, and age. Formal signs of crustal sheet thrusting over convergent plate boundaries and subduction of the lithospheric mantle beneath these boundaries have been revealed. The deep boundaries and thickness of lithospheric plates and asthenospheric lenses have been traced. A similarity in the deep structure of collision zones of second-order marginal-sea buffer plates differing in age is displayed at the boundaries with the Eurasian, North American, and Pacific plates of the first order. Collision of oceanic crustal segments with the Mesozoic continental margin in the Sikhote-Alin is characterized, as well as collision of the oceanic lithosphere with the Kamchatka composite island arc. A spatiotemporal series of deep-seated Middle Mesozoic, Late Mesosoic, and Cenozoic collision tectonic units having similar structure is displayed in the transitional zone from the Asian continent to the Pacific plate.  相似文献   

18.
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation.

The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys.

Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans.  相似文献   

19.
杨文采 《地质论评》2014,60(5):945-961
本篇讨论大陆岩石圈拆沉、伸展与裂解作用过程。由于大陆岩石圈厚度大而且很不均匀,产生裂谷的机制比较复杂。大陆碰撞远程效应的触发,岩石圈拆沉,以及板块运动的不规则性和地球应力场方向转折,都可能产生岩石圈断裂和大陆裂谷。岩石圈拆沉为在重力作用下"去陆根"的作用过程,演化过程可分为大陆根拆离、地壳伸展和岩石圈地幔整体破裂三个阶段。大陆碰撞带、俯冲的大陆和大洋板块、克拉通区域岩石圈,都可能产生岩石圈拆沉。大陆岩石圈调查表明,拉张区可见地壳伸展、岩石圈拆离、软流圈上拱和热沉降;它们是大陆岩石圈伸展与裂解早期的主要表现。从初始拉张的盆岭省到成熟的张裂省,拆离后地壳伸展成复式地堑,下地壳幔源玄武岩浆侵位,断裂带贯通并切穿整个岩石圈,表明地壳伸展进入成熟阶段。中国东北松辽盆地和西欧北海盆地曾处于成熟的张裂省。岩石圈破裂为岩浆侵位提供了阻力很小的通道网。岩浆侵位作用伴随岩石圈破裂和热流体上涌,成熟的张裂省可发展成大陆裂谷。多数的大陆裂谷带并没有发展成威尔逊裂谷带和洋中脊,普通的大陆裂谷要演化为威尔逊裂谷带,必须有来自软流圈的长期和持续的热流和玄武质岩浆的供应。威尔逊裂谷带岩石圈地幔和软流圈为地震低速带,其根源可能与来自地幔底部的地幔热羽流有关。  相似文献   

20.
杨巍然 《地学前缘》2004,11(2):525-532
湖北郧县王家庄有两期脉体 ,早期为纤维状石英脉 ,总体呈北北东向分布 ,平行脉壁有一中间面使其对称分布 ,显示张性裂隙持续发育过程 ;与之垂直的横向压性裂隙将它“错开”。形貌上酷似板块构造的大洋中脊和转换断层。晚期云母脉叠置在上述两组裂隙之上 ,并使原来裂隙性质发生变化。这些特征与区域应力场分布 ,特别是与两郧断裂的演化息息相关。根据分形理论 ,将王家庄石英云母脉与板块构造进行对比 ,一方面从微观的角度证实了板块构造一些基本观点的合理性。同时从微观信息得到深入研究板块构造的一些新启示 :对板块形成机制不要局限于软流圈对流 ,而应从更深层次研究地幔物质运动规律 ;要将大陆和大洋作为一个整体研究全球应力场分布规律与构造演化历史 ,其中转换断层是联系大陆和大洋的纽带 ;加强RRR型三联点研究 ,它是研究深部 (地幔 )物质运动和上部 (地壳、岩石圈 )构造应力场相互关系的重要窗口  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号