首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
地面扰动重力垂直梯度的确定   总被引:6,自引:6,他引:0       下载免费PDF全文
鉴于扰动重力垂直梯度在大地测量和物探中有重要作用,在未直接测量的情况下,对如何由地面重力异常及地形数据求取扰动垂直梯度进行了研究和分析,认为在被研点附近要求重力点分布密集,且精度不低于1×10-6ms-2;对中央区域积分奇异性问题也作了讨论;此外,扰动重力垂直梯度如何在大地测量和地球物理中进一步得到应用,以及为何用扰动重力垂直梯度代替重力异常垂直梯度也给予了简明的论述.  相似文献   

2.
重力测量国际进展   总被引:2,自引:2,他引:0       下载免费PDF全文
在大地测量、地球物理学、地质学、计量领域中,对精确且可溯源的绝对重力测量的需求不断增加.重力测量的国际组织相继建立,组织国际绝对重力仪比对和区域性比对,推动重力测量的不断发展.本文介绍了历届国际组织的联席会议和国际绝对重力仪比对情况.  相似文献   

3.
Gravity surveys in western Texas with station spacing of about 400 m were complemented by carefully observed vertical gradients of gravity making use of specially designed and automated instrumentation. The presented areal surveys of 51 and 52 stations taken in relatively flat terrain are parts of a large survey of close to 1000 stations complemented by an equal number of vertical gradient measurements. Quite irregular anomalous vertical gravity gradients surpassing 10 microgal/m were often encountered. Assuming the causative density contrasts to be located not more than 10 m below ground surface then free air correction errors of ± 0.1 mgal and more must be accepted. From a practical point of view there seems to be no other way to control such unpredictable errors than to carefully observe the local variation of vertical gravity gradients with adequate equipment. Making use of very closely spaced gravity measurements to derive these anomalous features seems more costly and cumbersome.  相似文献   

4.
A knowledge of the vertical component of the oceanic tidal load to a precision of at least one microgal is essential for the geophysical exploitation of the high-precision absolute and differential gravity measurements which are being made at ground level and in deep boreholes. On the other hand the ocean load and attraction signal contained in Earth tide gravity measurements can be extracted with a precision which is sufficient to characterize the behaviour of the oceanic tides in different basins and this provides a check of the validity of the presently proposed cotidal maps. The tidal gravity profiles made since 1971 from Europe to Polynesia, through East Africa, Asia and Australia, with correctly intercalibrated gravimeters, comprise information from 91 tidal gravity stations which is used in this paper with this goal in mind.A discussion of all possible sources of error is presented which shows that at the level of 0.5 μgal the observed effects cannot be ascribed to computational or instrumental errors. Cotidal maps which generate computed loads in agreement with the Earth tide gravity measurements over a sufficiently broad area can be used with confidence as a working standard to apply tidal corrections to high-precision measurements made by using new techniques in geodesy, geophysics and geodynamics, satellite altimetry, very long baseline interferometry, Moon and satellite laser ranging and absolute gravity. The recent cotidal maps calculated by Schwiderski for satellite altimetry reductions agree very well with land-based gravimeter observations of the diurnal components of the tides (O1, K1 and P1 waves) but his semi-diurnal component maps (M2, S2 and N2 waves) strangely appear less satisfactory in some large areas. The maps of Hendershott and Parke give good results in several large areas but not everywhere. More detailed investigations are needed not only for several coastal stations but mainly in the Himalayas.  相似文献   

5.
The static Earth’s gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth’s surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet’s boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green’s kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.  相似文献   

6.
The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so that the accuracy of altimeter data is lower than that over open oceans.Here we develop a new multi-subwaveform parametric retracker(MSPR) to improve the quality of altimeter data for the recovery of gravity anomaly in coastal oceans.The least squares collocation method is used to recover the residual gravity anomaly over the coastal water from altimetric data.The waveform data records from Geosat/GM around Taiwan Island are practically retracked with MSPR.When compared with the Taiwan geoid height,the results retracked by MSPR are more accurate than those retracked by the well-known β-5-parmeter method and from the geophysical data records(GDRs).The gravity anomalies over Taiwan coastal waters are calculated from the retracked altimeter data with the least squares collocation.When we compared gravity anomalies computed using altimeter GDRs with the ship-borne gravity data over Taiwan coastal ocean,we found that the results from retracked data are more accurate than those from GDRs.  相似文献   

7.
论述了物理大地测量与地球物理中分别对应的正常重力场源的构成、物理与几何上的意义以及对两者之间的差别进行了论述 ,分析了同源性研究在物理大地测量与地球物理相互结合以及定量描述地球内部密度分布的过程中的重要意义 .给出了同源性分析可遵循的途径及其所应满足的条件与约束 .最后 ,以正常椭球的扁率变化率具有最小模为约束 ,应用PREM模型 (PreliminaryReferenceEarthModel)密度为大地测量中正常椭球赋值 ,其结果以正常椭球的内部扁率的多项式表达式给出 .  相似文献   

8.
Integrating the deflections of the vertical along the flight line can yield geoid profiles which are valuable in the study of geodesy and geophysics, fortunately, the deflections can be measured directly by vector gravimetry. Airborne vector gravimetry using a Strapdown Inertial Navigation System and the Global Navigation Satellite System (SINS/GNSS) has shown promising results in previous studies. However, the quality of the SINS and GNSS is a major limitation; in particular, the attitude errors induced by the gyros will result in large measurement errors to the horizontal components of the gravity disturbance, and these measurement errors represent the behavior of low-frequency trend. An airborne vector gravimetry method used to remove the bias and low-frequency trends in the gravity disturbance estimated for each survey line has been developed. This method uses the horizontal components of the gravity disturbance computed from EGM2008 (Earth Gravitational Model 2008) as a reference. Firstly, the horizontal measurement results obtained from the gravimeter are divided into high- and low-frequency components according to the resolution of the EGM2008, and then, the bias and low-frequency trends of the low-frequency components are corrected using a linear fit to the EGM2008 reference data. Finally, the ultimate results can be acquired after combining the high-frequency components and the corrected low-frequency components. The data used was obtained from the SGA-WZ, which is the first strapdown airborne gravimeter developed in China. The results of this method are promising. The internal accuracy of the gravity disturbance's horizontal components for repeated survey lines exceeds 3.5 mGal, and the corresponding resolution is approximately 4.8 km based on 160-s data smoothing and an airplane averaging speed of approximately 216 km/h. After applying the WCF (Wavenumber Correlation Filter), the internal accuracy of the horizontal components exceeds 2 mGal. This can satisfy the requirement of the application in geodesy and solid earth geophysics.  相似文献   

9.
Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the first satellite mission that observes gravity gradients from the space, to be primarily used for the determination of high precision global gravity field models. However, the GOCE gradients, having a dense data distribution, may potentially provide better predictions of the regional gravity field than those obtained using a spherical harmonic Earth Geopotential Model (EGM). This is investigated in Auvergne test area using Least Squares Collocation (LSC) with GOCE vertical gravity gradient anomalies (Tzz), removing the long wavelength part from EGM2008 and the short wavelength part by residual terrain modelling (RTM). The results show that terrain effects on the vertical gravity gradient are significant at satellite altitude, reaching a level of 0.11 E?tv?s unit (E.U.) in the mountainous areas. Removing the RTM effects from GOCE Tzz leads to significant improvements on the LSC predictions of surface gravity anomalies and quasigeoid heights. Comparison with ground truth data shows that using LSC surface free air gravity anomalies and quasi-geoid heights are recovered from GOCE Tzz with standard deviations of 11 mGal and 18 cm, which is better than those obtained by using GOCE EGMs, demonstrating that information beyond the maximal degree of the GOCE EGMs is present. Investigation of using covariance functions created separately from GOCE Tzz and terrestrial free air gravity anomalies, suggests that both covariance functions give almost identical predictions. However, using covariance function obtained from GOCE Tzz has the effect that the predicted formal average error estimates are considerably larger than the standard deviations of predicted minus observed gravity anomalies. Therefore, GOCE Tzz should be used with caution to determine the covariance functions in areas where surface gravity anomalies are not available, if error estimates are needed.  相似文献   

10.
Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy,and can provide fundamental information for geophysics,geodynamics,seismology,and mineral exploration.Rectangular harmonic analysis(RHA)is proposed for regional gravity field modeling in this paper.By solving the Laplace’s equation of gravitational potential in local Cartesian coordinate system,the rectangular harmonic expansions of disturbing potential,gravity anomaly,gravity disturbance,geoid undulation and deflection of the vertical are derived,and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients(RHC).We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations.In order to reduce the edge effects caused by periodic continuation in RHA,we propose the strategy of extending the size of computation domain.The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal.The accuracy of the 2.5′×2.5′geoid undulations computed from ground and airborne gravity data is 1 and 1.4cm,respectively.The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 mGal.Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model,which may be a new option for the representation of the fine structure of regional gravity field.  相似文献   

11.
陆地重力观测相较于航空和卫星重力观测,距离场源更近,观测精度相对较高,其静态异常和时变数据已广泛应用于研究多种地球动力学问题.21世纪以来,绝对重力观测技术发展迅速,陆地观测网络日益完善,高精度陆地重力观测数据产品逐渐丰富,基于这些产品的大地测量和地球物理研究不断取得新进展.本文总结了近十几年来高精度陆地重力观测数据在大地测量和地球物理领域的应用进展情况,包括基于重力异常数据构建重力场和大地水准面模型、建立地壳物性结构模型、反演Moho界面形态和估计岩石圈有效弹性厚度,以及利用时变重力数据构建时变重力场模型、探测微弱动力学信号、估计地壳构造变形速率和分析与火山、地震过程的可能关联,最后探讨分析了陆地重力测量的未来发展趋势,可为中国大陆重力观测系统建设与发展规划提供参考.  相似文献   

12.
Studia Geophysica et Geodaetica - Topographic effects on gravity field modeling are important for geodesy, geophysics and related geosciences. In this study we evaluate the gravitational effects of...  相似文献   

13.
An economic and precise processing system for microgravity surveys is presented. Three computer processing modes covering areal ground and underground measurements, measurements in vertical shafts, and measurements of vertical gravity gradients with a 3 m high tower are dealt with. Diagrams for manual calculation of gravity effects of prismatic walls, vertical shafts, and horizontal galleries, as well as programs for calculation of accurate terrain corrections and corrections for gravity effects of bodies with complicated ground-plan are proposed. The method of processing microgravity data is two to three times quicker than any traditional way, with maximum accuracy preserved in resulting gravity micro-anomalies. Applications from the field of mining geophysics and archaeology are included.  相似文献   

14.
General inverse of Stokes, Vening-Meinesz and Molodensky formulae   总被引:1,自引:0,他引:1  
The undulation of the geoid, the gravity anomaly and the deflection of the vertical are the three basic observations describing the shape and the gravity field of the earth. The Stokes’ formula that computes the undulation of the geoid using the gravity anomaly on the geoid under spherical approximate conditions was first put forward by Stokes[1]. According to Stokes’ theory, The Vening-Meinesz formula that computes the meridian and the prime vertical components of the deflection of the ve…  相似文献   

15.
详细讨论了地球自转的天文地球动力学效应,地极移动和日长变化导致地球引力位系数产生时变特性并引起重力的摄动,根据理论力学的基本概念,导出了由于地球自转变化引起的地球引力位系数变化、重力摄动、垂线偏差和地球形变的表达式,并定量地研究了极移和日长变化对测站重力观测值和地球形变的影响,建议在高精度的空间大地测量中要顾及到地球自转变化引起的一系列效应。  相似文献   

16.
小波分析在地球物理及大地测量中的应用   总被引:3,自引:8,他引:3  
小波分析是重要的时—领域分析工具,在地球物理和大地测量相关问题研究中逐渐显示出其独特的作用。本文较全面地介绍了现阶段小波分析在重力异常分解、固体潮、地球自转变化、ENSO和重力场展开等地球物理及大地到量领域的研究进展,并在此基础上对地球物理及大地测量领域小波分析的应用前景做了进一步分析。  相似文献   

17.
分析了动力大地测量学数据的结构和应用特点,结构现有网络和计算机软硬件状况,兼顾使用者的计算机水平和建库的人物力条件,得出了建立地测量学科数据库的思路和方案,建成基于Win98经济网络分布式动力大地测量学数据库。基于Win98经济网络、以资源共享方式集成的数据库系统开发环境有很大的在线数据存储能力、灵活分散式的数据库实现模式和调用功能。实现了以往大型计算机才能完成的系统。目前,系统平时能满足一般需要,必要时完成大型复杂任务。已拥有中国及其邻区原始气象数据、全球平均气压数据、超导观测数据、中国邻区重力场数据、地球自转及其有关数据、海潮模型、重力模型、软件等子库,容量达数十千兆,为科研提供快捷的数据服务。为目前普遍使用的区域网用户提供一种可行的科学数据库实现模式。  相似文献   

18.
本文用重力测量技术对城市地表下沉进行了实验研究,从2016年3月到2017年5月在武汉市内地表下沉较大的部分城区进行了7期流动重力观测实验,并用D-InSAR观测的垂向位移进行了验证.数值结果表明重力观测每期整网平差后点值平均精度都小于10×10~(-8)m·s~(-2),说明采用重力观测能在城市内获得高精度的区域重力变化.第7期相对于第1期的结果与D-InSAR在大致相同时间段内地表垂直位移结果比较表明,重力增加的大部分区域与D-InSAR观测到的地表下沉区域相一致,说明这些区域的重力增加主要是由地表下沉引起的.从第2到7期相对于第1期的重力变化说明在近12个月的时间内测区最大重力变化约40×10~(-8)m·s~(-2),且局部区域的重力值是逐渐增加的,说明地表下沉是持续进行的.本实验结果说明重力观测技术能为城市地表下沉提供重力观测约束和机制解释.  相似文献   

19.
Gravity derived only from airborne gravity gradient measurements with a normal error distribution will have an error that increases with wavelength. It is straightforward in principle to use sparsely sampled regional gravimeter data to provide the long wavelength information, thereby conforming the derived gravity to the regional gravity. Regional surface or airborne gravimeter data are not always available and can be difficult and expensive to collect in many of the areas where an airborne gravity gradiometer survey is flown. However the recent release by the Danish National Space Centre of the DNSC08 global gravity anomaly data has provided regional gravity data for the entire earth of adequate quality for this purpose. Studies over three areas, including comparisons with ground, marine and airborne gravimetry, demonstrate the validity of this approach. Future improvements in global gravity anomaly data are expected, particularly as the product from the recently launched Gravity field and steady‐state Ocean Circulation Explorer (GOCE) satellite becomes available and these will lead directly to an improvement in the very wide bandwidth gravity available after conforming gravity derived from gravity gradiometry with the global gravity.  相似文献   

20.
Due to the ESA’s satellite mission GOCE launched in March 2009, gravitational gradients sampled along the orbital trajectory approximately 250 km above the Earth’s surface have become available. Since 2010, gravitational gradients have routinely been applied in geodesy for the derivation of global Earth’s gravitational models provided in terms of fully normalized coefficients in a spherical harmonic series representation of the Earth’s gravitational potential. However, in geophysics, gravitational gradients observed by spaceborne instruments have still been applied relatively seldom. This contribution describes their possible geophysical applications in structural studies where gravitational gradients observed at satellite altitudes are compared with those derived by a spectral forward modeling technique using available global models of selected Earth’s mass components as input data. In particular, GOCE gravitational gradients are interpreted in terms of a superposition principle of gravitation as combined gravitational effects generated by a homogeneous reference ellipsoid of revolution, mean topographic and ice mass density distributions, depth-dependent mass density contrasts within bathymetry and lateral mass density anomalies with sediments and crustal layers. Respective gravitational effects are one by one removed from gravitational gradients observed at approximately 250 km elevation above ground. Removing respective gravitational gradients from observed gravitational gradients gradually reveals problematic geographic areas with model deficiencies. For the full interpretation of observed gravitational gradients, deficiencies of CRUST2.0 must be corrected and effects of deeper laying mass anomalies not included in the study considered. These findings are confirmed by parameters describing spectral properties of the gravitational gradients. The methodology can be applied for validating Earth’s gravitational models and for constraining crustal models in the development phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号