首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rates of nitrification along an estuarine gradient in Narragansett Bay   总被引:1,自引:0,他引:1  
Rates of pelagic nitrification, measured using N-Serve-sensitive [14C]bicarbonate uptake, varied by as much as an order-of-magnitude among three sites along the salinity gradient of Narragansett Bay (Rhode Island, United States). Rates were always higher at the Providence River estuary site (0.04–11.2 μmol N I?1 d?1) than at either the lower Narragansett Bay site (0.02–0.98 μmol N I?1d?1) or the freshwater Blackstone River site (0.04–1.7 μmol N I?1d?1). Although temperature was the most important variable regulating the annual cycle of nitrification, ammonium concentrations were most likely responsible for the large differences in rates among the three sites in summer. At the levels found in this estuarine system, salinity and concentrations of oxygen or total suspended matter did not appear to have a direct measurable effect on nitrification and pH did only occasionally. Nitrification played an important role in the nitrogen cycle at all three sites. In Narragansett Bay, nitrification contributed 55% of the NO2 ? and NO3 ? entering annually, and was the major source during spring and summer. Water from offshore was the only other large source of NO2 ? and NO3 ?, contributing 34%. High summer rates of nitrification could support much of the phytoplankton uptake of NO2 ? and NO3 ?. In the Providence River estuary, the largest annual input of NO2 ? and NO3 ? was from rivers (54%), although nitrification (28%) and water from lower portions of the bay (11%) also made large contributions. Again, nitrification was most important in the summer. The high rates of nitrification in the Providence River estuary during summer were also likely to be important in terms of oxygen demand, and the production of nitric and nitrous oxides. In the Blackstone River, NO2 ? and NO3 ? concentrations increased as the river flowed through Rhode Island, and nitrification was a possible source.  相似文献   

2.
The flushing time of the Providence River was estimated using three different data sets and three different methodologies. Dye concentrations were measured following instantaneous dye releases during wet weather experiments performed by the Narragansett Bay Project between October 1988 and June 1989. These data were analyzed to obtain flushing time estimates. Salinity measurements collected during the Sinbadd (Sampling In Narragansett Bay All During the Day) cruises, Spray (Sampling the Providence River All Year) cruises and wet weather experiments were used with the fraction of fresh water method and box model to calculate flushing time. The Sinbadd cruises performed 4 seasonal surveys at 22 stations in Narragansett Bay during 1986 to obtain a view of the whole Narragansett Bay with respect to the concentrations of nutrients and trace metals. The Spray cruises collected data in the Providence River at 10 stations to determine the relationship of nutrients and trace metals concentrations in the Seekonk and Providence rivers as a function of point source inputs. Based on the flushing time estimates, an exponential relationship between freshwater inflow and flushing time was developed (correlation coefficient of 0.826). The flushing time ranged from 0.8 d at high (90 m3 m?1) freshwater inflows to 4.4 d at low (20 m3 s?1) freshwater inflows. The average flushing time of the Providence River was estimated as 2.5 d for the mean freshwater inflow of 42.3 m3 s?1.  相似文献   

3.
Six synoptic samplings of nutrient concentrations of the water column and point-source inputs (rivers, sewage treatment plants) were conducted in the Seekonk-Providence River region of Narragansett Bay. Concentrations of nutrients (NH4 +, NO2 ?+NO3 ?, PO4 ?3, dissolved silicon, particulate N, particulate C) were predicted using a conservative, two-layer box model in order to assess the relative influence of external inputs and internal processes on observed concentrations. Although most nutrients were clearly affected by processes internal to the system, external input and mixing explained most of the variability in and absolute magnitude of observed concentrations, especially for dissolved constituents. In the bay as a whole, two functionally distinct regions can now be identified: the Seekonk-Providence River, where dissolved nutrient concentrations are externally controlled and lower Narragansett Bay where internal processes regulate the behavior of nutrients. A preliminary nitrogen budget suggests that the Seekonk-Providence River exports some 95% of the nitrogen entering the system via point sources and bottom water from upper Narragansett Bay.  相似文献   

4.
Low dissolved oxygen events were characterized in Narragansett Bay (NB), a moderate-size (370 km2) temperate estuary with a complex passage/embayment geometry, using time series from 2001 to 2006 at nine fixed-site monitoring stations. Metrics for event intensity and severity were the event-mean deficit relative to a threshold (mg O2 l−1) and the deficit-duration (mg O2 l−1 day; product of deficit and duration [day]). Hypoxia (threshold 2.9 mg O2 l−1) typically occurred intermittently from late June through August at most stations, as multiple (two to five per season) events each 2 to 7 days long with deficit-duration 2 to 5 mg O2 l−1 day. Conditions were more severe to the north and west, a pattern attributed to a north–south nutrient/productivity gradient and east–west structure of residual circulation. Spatial patterns for suboxic and severely hypoxic events (thresholds 4.8 and 1.4 mg O2 l−1) were similar. The view that different processes govern event variability in different regions, each influenced by local hydrodynamics, is supported by both weak spatial synchronicity (quantified using overlap of event times at different sites) and multiple linear regressions of biological and physical parameters against event severity. Interannual changes were prominent and season-cumulative hypoxia severity correlated with June-mean river runoff and June-mean stratification. Benthic ecological implications for areas experiencing events include: NB hypoxia classifies as periodic/episodic on a near-annual basis; highest direct mortality risk is to sensitive and moderately sensitive sessile species in the northern West Passage and western Greenwich Bay, with some risk to Upper Bay; direct risk to mobile species may be ameliorated by weak spatial synchronicity; and indirect impacts, including reduced growth rates and shifts in predator–prey balances, are very likely throughout the sampled area due to observed suboxic and hypoxic conditions.  相似文献   

5.
Strong benthic–pelagic coupling is an important characteristic of shallow coastal marine ecosystems. Building upon a rich history of benthic metabolism data, we measured oxygen uptake and nutrient fluxes across the sediment–water interface along a gradient of water column primary production in Narragansett Bay, RI (USA). Despite the strong gradients seen in water column production, sediment oxygen demand (SOD) and benthic nutrient fluxes did not exhibit a clear spatial pattern. Some of our sites had been studied in the 1970s and 1980s and thus allowed historical comparison. At these sites, we found that SOD and benthic fluxes have not changed uniformly throughout Narragansett Bay. In the uppermost portion of the bay, the Providence River Estuary, we observed a significant decrease in dissolved inorganic phosphorus fluxes which we attribute to management interventions. At another upper bay site, we observed significant declines in SOD and dissolved inorganic nitrogen fluxes which may be linked to climate-induced decreases in water column primary production and shifts in bloom phenology. In the 1970s, benthic nutrient regeneration supplied 50% to over 200% of the N and P needed to support primary production by phytoplankton. Summer nutrient regeneration in the Providence River Estuary and Upper bay now may only supply some 5–30% of the N and 3–20% of the P phytoplankton demand.  相似文献   

6.
The effects of low dissolved oxygen or hypoxia (<2 mg l?1) on macrobenthic infaunal community structure and composition in the lower Chesapeake Bay and its major tributaries, the Rappahannock, York, and James rivers are reported. Macrobenthic communities at hypoxia-affected stations were characterized by lower species diversity, lower biomass, a lower proportion of deep-dwelling biomass (deeper than 5 cm in the sediment), and changes in community composition. Higher dominance in density and biomass of opportunistic species (e.g., euryhaline annelids) and lower dominance of equilibrium species (e.g., long-lived bivalves and maldanid polychaetes) were observed at hypoxia-affected stations. Hypoxia-affected macrobenthic communities were found in the polyhaline deep western channel of the bay mainstem north of the Rappahannock River and in the mesohaline region of the lower Rappahannock River. No hypoxic effects on the infaunal macrobenthos were found in the York River, James River, or other deep-water channels of the lower Chesapeake Bay.  相似文献   

7.
A synoptic reconnaissance survey was performed over a five-day period in August 1988 to assess benthic habitat quality throughout Narragansett Bay, Rhode Island, using REMOTS® sediment-profile photography and analysis in combination with measurements of the levels ofClostridium perfringens spores (a fecal indicator) in sediments. Three main areas of degraded benthic habitat quality related to either excessive organic enrichment or physical disturbance were identified based solely on the REMOTS® analysis: the Providence River Reach, Greenwich Bay and its associated coves and harbors, and an area located along the southwest side of Prudence Island. Sediments at many stations in these areas exhibited shallow apparent redox-potential discontinuity (RPD) depths, high apparent oxygen demand, and low-order benthic successional stages. ElevatedClostridium perfringens spore counts in surface sediments were attributed to inputs from wastewater treatment facilities. The highest spore counts occurred at the head of the bay, where wastewater treatment discharges and associated combined sewer overflows are numerous. Using data from the REMOTS® analysis and the sediment inventory ofC. perfringens spores, a distinction was made between organic enrichment of the bottom from sewage, versus nonsewage enrichment or physical disturbance. The combination of techniques employed in this investigation could be used to design more efficient monitoring programs to assess eutrophication effects in estuaries and determine the effectiveness of regulatory or management initiatives to reduce organic overenrichment of benthic habitats.  相似文献   

8.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

9.
Fish mortality and hypoxic events occur in many coastal and inland systems and may result from natural or anthropogenically mediated processes. The effects of consequent changes in water biogeochemistry have been investigated for communities of benthic invertebrates and pelagic metazoans. The responses of micro-plankton assemblages, however, have remained largely unstudied. The northern basin of King Harbor, a small embayment within Santa Monica Bay, CA, USA, suffered a massive fish kill in March 2011 as a consequence of acute hypoxia. Dissolved oxygen concentrations < 0.1 ml?l?1 were measured in the northern basin of the harbor for several days following the mortality event, and a strong spatial gradient of oxygen was observed from the northern basin to waters outside the harbor. The microplankton community within King Harbor differed significantly from a diatom-dominated community present in neighboring Santa Monica Bay. The latter region appeared unaffected by physicochemical changes, induced by the fish kill, that were observed within the harbor. A trophic shift was observed throughout King Harbor from a photoautotrophic-dominated assemblage to one of heterotrophic forms, with relative abundances of bacterivorous ciliates increasing by more than 80 % in the most impacted part of the harbor. Significant changes in community structure were observed together with dramatically reduced photosynthetic yield of the remaining phytoplankton, indicating severe physiological stress during the extreme hypoxia.  相似文献   

10.
Field surveys of phytoplankton metabolism, based on oxygen changes, were made in Narragansett Bay from 1971–73. Annual daytime net production varied from 218 g C per m2 per yr in the East Passage to 429 g C per m2 per yr in the Providence River. The area based average for the bay was 269 g C per m2 per yr. The area based average night respiration was 159 g C per m2 per yr resulting in an annual net carbon available for export or to the benthos of 110 g C per m2 per yr. A set of microcosms, operated so as to simulate the Bay, had an annual net production of 276 g C per m2 per yr and a night respiration of 163 g C per m2 per yr resulting in an annual net carbon available for export or to the benthos of 113 g C per m2 per yr. *** DIRECT SUPPORT *** A01BY015 00002  相似文献   

11.
A 52-yr record of dissolved oxygen in Chesapeake Bay (1950–2001) and a record of nitrate (NO3 ) loading by the Susquehanna River spanning a longer period (1903, 1945–2001) were assembled to describe the long-term pattern of hypoxia and anoxia in Chesapeake Bay and its relationship to NO3 loading. The effect of freshwater inflow on NO3 loading and hypoxia was also examined to characterize its effect at internannual and longer time scales. Year to year variability in river flow accounted for some of the observed changes in hypoxic volume, but the long-term increase was not due to increased river flow. From 1950–2001, the volume of hypoxic water in mid summer increased substantially and at an accelerating rate. Predicted anoxic volume (DO<0.2 mg I−1) at average river flow increased from zero in 1950 to 3.6×109 m3 in 2001. Severe hypoxia (DO<1.0 mg I−1) increased from 1.6×109 to 6.5×109 m3 over the same period, while mild hypoxia (DO<2.0 mg I−1) increased from 3.4×109 to 9.2×109 m3. NO3 concentrations in the Susquehanna River at Harrisburg, Pennsylvania, increased up to 3-fold from 1945 to a 1989 maximum and declined through 2001. On a decadal average basis, the superposition of changes in river flow on the long-term increase in NO3 resulted in a 2-fold increase in NO3 loading from the Susquehanna River during the 1960s to 1970s. Decadal average loads were subsequently stable through the 1990s. Hypoxia was positively correlated with NO3 loading, but more extensive hypoxia was observed in recent years than would be expected from the observed relationship. The results suggested that the Bay may have become more susceptible to NO3 loading. To eliminate or greatly reduce anoxia will require reducing average annual total nitrogen loading to the Maryland mainstem Bay to 50×106 kg yr−1, a reduction of 40% from recent levels.  相似文献   

12.
Oxygen depletion is a seasonally dominant feature of the lower water column on the highly-stratified, riverine-influenced continental shelf of Louisiana. The areal extent of hypoxia (bottom waters ≤2 mg l?1 dissolved oxygen) in mid-summer may encompass up to 9,500 km2, from the Mississippi River delta to the upper Texas coast, with the spatial configuration of the zone varying interannually. We placed two continuously recording oxygen meters (Endeco 1184) within 1 m of the seabed in 20-m water depth at two locations 77 km apart where we previously documented midsummer bottom water hypoxia. The oxygen meters recorded considerably different oxygen conditions for a 4-mo deployment from mid-June through mid-October. At the station off Terrebonne Bay (C6A), bottom waters were severely depleted in dissolved oxygen and often anoxic for most of the record from mid-June through mid-August, and there were no strong diurnal or diel patterns. At the station 77 km to the east and closer to the Mississippi River delta (WD32E), hypoxia occurred for only 50% of the record, and there was a strong diurnal pattern in the oxygen time-series data. There was no statistically significant coherence between the oxygen time-series at the two stations. Coherence of the oxygen records with wind records was weak. The dominant coherence identified was between the diurnal peaks in the WD32E oxygen record and the bottom pressure record from a gauge located at the mouth of Terrebonne Bay, suggesting that the dissolved oxygen signal at WD32E was due principally to advection by tidal currents. Although the oxygen time-series were considerably different, they were consistent with the physical and biological processes that affect hypoxia on the Louisiana shelf. Differences in the time-series were most intimately tied to the topographic cross-shelf gradients in the two locations, that is, station C6A off Terrebonne Bay was in the middle of a broad, gradually sloping shelf and station WD32E in the Mississippi River Delta Bight was in an area with a steeper cross-shelf depth gradient and likely situated near the edge of a hypoxic water mass that was tidally advected across the study site.  相似文献   

13.
We continuously measured dissolved silicate concentrations and fluxes discharged from various Rhode River subwatersheds for a period of 14 yr from 1984 to 1998 and for 15 mo in 1971–1972. We also measured dissolved silicate concentrations along a transect from the head of the tide in Rhode River estuary to Chesapeake Bay. The average concentration of dissolved silicate discharged from the Rhode River watershed was 10.8 mg Si l?1. There were consistent and significant differences in silicate concentrations discharged over time and space among subwatersheds. Mean annual silicate flux from the watershed was 26.6 kg Si ha?1 and 93% of this occurred during the winter and spring seasons. There were large interannual variations in silicate flux, due primarily to differences in precipitation and water discharge, rather than silicate concentration. Land use had little or no effect on silicate flux from various subwatersheds. Silicate concentrations discharged from a subset of subwatersheds in 1995–1996 were 25% to 35% lower than in a period with similar precipitation in 1971–1972. Mean annual concentrations of silicate discharged from nine subwatersheds have been declining about 1.5% yr?1 or by 0.21–0.26 mg Si l?1 yr?1 over the last 25 yr. Despite high average silicate fluxes from the watershed, at times the Rhode River estuary developed low dissolved silicate concentrations, which could have been limiting to the growth of diatoms. Examples were in the spring after a winter with low watershed discharge (as low as 0.019 mg Si l?1 in 1995) and after protracted drought (as low as 0.041 mg Si l?1 in 1993).  相似文献   

14.
The temporal variability of hydrocarbon inputs from rivers discharging into Narragansett Bay under dry weather conditions, as well as the elucidation of the types and sources of hydrocarbons found in urban rivers, has been investigated. The rivers studied, the Blackstone, the Pawtuxet, the Moshassuck, and the Woonasquatucket, constitute the majority of river flow to the estuary. The unfiltered river water samples were extracted and analyzed for total aliphatic hydrocarbons, including natural and petroleum-derived species. The results of the year-long study revealed consistent oil pollution in all of the rivers sampled. Crankcase oil was ubiquitous, but the presence as well of fuel oils and, particularly in the Moshassuck River, gasoline (or kerosene), demonstrate that these rivers are subject to considerable oil pollution stress. The average concentration of hydrocarbons was ≈37 μg l?1 which, according to some toxicologists, indicates that sensitive organisms may be under stress. In addition, most samples showed evidence of small amounts of terrigenous plant wax hydrocarbons. Hydrocarbon concentrations are comparable to those in other urban rivers but are higher than in rivers from rural areas; moreover, they did not vary in any systematic way with season. The mass transport of hydrocarbons in each of the rivers generally mimicked trends in river discharge, thereby emitting the lowest mass to the estuary in the summer and increasing throughout the remainder of the year. Moreover, due primarily to relative discharge differences, the Blackstone and Pawtuxet rivers constitute 90% of the total calculated flux of hydrocarbons from all four rivers. By combining the results from this investigation with those from previous studies, it was possible to obtain an estimate of the total annual inputs of these contaminants to Narragansett Bay. Total annual loads from rivers and wastewater treatment facilities were approximately 240 mt. When sources such as wet weather inputs were included, the total increased to 420 mt yr?1. This value represents direct current inputs to the system and is considerably lower than previously published estimates. The current direct input estimate, while indicative of an improving situation, differs from previous estimates in that the latter were based upon calculations that approximated the long-term loadings from the watersheds, most of which are likely accumulating above the fall-lines of rivers throughout the watershed. Nevertheless, the current loadings represent a significant chronic flux of hydrocarbons to Narragansett Bay. For example, this estimate indicates that an amount equal to approximately 43% of the oil discharged into Narragansett Bay from the recent World Prodigy oil spill enters the estuary from chronic sources every year.  相似文献   

15.
We examined the temporal and spatial variability of urea concentrations and urea uptake and regeneration rates collected on cruises along the longitudinal axis of the Chesapeake Bay between 1972 and 1998. Interannually, mean Bay-wide surface urea concentrations ranged between 0.49 and 0.91 μg-at N l?1 with a nearly 50% decrease in surface concentrations observed between 1988 and 1998. Concentrations of urea from samples collected within ~1 m of the bottom were generally higher and much more varable than surface samples. Seasonally, two different patterns were observed in mean Bay-wide surface urea concentrations. Urea concentrations from near surface waters exhibited a clear summer peak for 1988 through 1994, while for 1973 and 1996 to 1998 a distinct winter-spring peak in concentration was observed. Urea concentrations from deeper waters showed a similar seasonal trend each year with peak concentrations measured in spring. Spatially, urea concentrations in the surface waters decreased in a conservative-type pattern from 0.91 μg-at N I?1 at the freshwater end member to 0.46 μg-at N I?1 at the ocean end member. Mean Bay-wide surface urea uptake rates displayed a seasonal pattern throughout the data set with maximum uptake rates (up to 0.33 μg-at N I?1 h?1) consistently observed during summer. Mean Bay-wide surface regeneration rates were highest but most variable during fall (1.63±0.82 μg-at N I?1 h?1). Mean urea uptake and regeneration rates displayed opposing spatial trends along the axis of the Bay with uptake rates being lowest in the North Bay where regeneration rates were highest. The average temporal and spatial patterns of urea concentration in Chesapeake Bay appear to reflect a balance between external inputs and internal biological recycling.  相似文献   

16.
The fatty acid composition of sediments from Narragansett Bay show significant variation between certain areas of the Bay. Both the organic carbon and fatty acid concentrations decrease with increasing distance from the Providence River area—an area which received municipal sewage and industrial effluents. The ratio of the fatty acid concentration to organic carbon concentration is fairly constant for all stations sampled. The variations in the relative abundance of fatty acids may reflect either the influence of fatty acids discharged to the river area by sewage effluents or the synthesis of fatty acids by microbial populations which probably differ for the areas compared. Temporal variations in fatty acid composition and fatty acid concentration are minimal. Lipolytic activity has been demonstrated and probably acts on glycerides deposited to the sediments releasing free fatty acids shortly after deposition. A model for the diagenesis of fatty acids in Recent sediments is proposed based upon the above findings and upon earlier reports by the authors and by other investigators.  相似文献   

17.
This study was designed to examine effects of low dissolved oxygen on finfish, lobster, and squid under field conditions in western Long Island Sound. The relationship between bottom dissolved oxygen (DO) and catch was examined for effects on abundance, numbers of species, and mean length, for trawl sites throughout the sound. Examination of mean catch per tow, and species number per tow, showed that both abundance and diversity decreased markedly with bottom DO, with dramatic declines at sites with DO<2 mg l?1. Of 18 species examined, 15 were found to occur with greater frequency at sites with DO>3 mg l?1 compared to sites with <2 mg l?1, and three of these species occurred significantly less frequency at a DO of 2–3 mg l?1. Trawl samples taken in the Narrows west of Greenwich, an area which chronically experiences summer hypoxia (DO<3 mg l?1) consistently yielded below average species number during hypoxic events. However, when DO was>3 mg l?1, 13 of 14 tows had above average species number. Abundance of five common species at sites>3 mg l?1 DO were significantly higher than at sites <3 mg l?1 DO in this area. Lobster was the only species not showing this DO threshold. Patterns in abundance vs DO for squid, bluefish, and butterfish suggest that these species are among the most sensitive to hypoxia. Only one of the four examined species, winter flounder, showed a decrease in mean length with DO. Scup, bluefish, and lobster lengths did not vary significantly with respect to dissolved oxygen.  相似文献   

18.
We used growth rates of juvenile winter flounderPseudopleuronectes americanus to assess anthropogenic influence on habitat quality at three sites in Narragansett Bay, Rhode Island. The upper bay site, Gaspee Point, had the highest population density and concentration of total nitrogen; human inputs decreased down bay. Growth rates of individually marked fish were measured in three 15-d experiments from June 8 to July 6, 1998 in 1-m2 cages placed at upper, middle, and lower bay sites. Water temperature, salinity, dissolved oxygen (DO), and benthic food were also measured. Stable isotopes of nitrogen and carbon were measured in experimental fish as possible indicators of nutrient enrichment and to identify organic carbon sources. Growth rates were 0.22–0.60 mm d−1, with the highest average at the mid-bay site. Growth was initially fastest at Gaspee Point, but dropped off as DO concentrations fell. Step-wise multiple regression indicated that location (upper, middle, or lower bay) explained most of the variability in fish growth (40%). Coefficients of other significant variables indicated that fish grew faster at lower salinities, smaller sizes, and with decreased time that DO was below 2.3 mg l−1. Benthic prey varied among sites and there was significantly less food and fewer species at Gaspee Point.Polydora cornuta was a favored food at all sites and was found in over half the stomachs. Values of δ15N in fish and sediments did not reflect differences in total nitrogen concentrations recorded near the sites. We suggest that anthropogenic influences, such as nutrients and sewage, affected habitat quality by reducing DO, which lowered fish growth rates.  相似文献   

19.
Over the past decade, nitrogen (N) loads to Narragansett Bay have decreased by more than 50%. These reductions were, in large part, the direct result of multiple wastewater treatment facility upgrades to tertiary treatment, a process which employs N removal. Here, we document ecosystem response to the N reductions and assess how the distribution of sewage N in Narragansett Bay has changed from before, during, and shortly after the upgrades. While others have observed clear responses when data were considered annually, our seasonal and regional comparisons of pre- and post-tertiary treatment dissolved inorganic nitrogen (DIN) concentrations and Secchi depth data, from bay-wide surveys conducted periodically from the early 1970s through 2016, resulted in only a few subtle differences. Thus, we sought to use stable isotope data to assess how sewage N is incorporated into the ecology of the Bay and how its distribution may have changed after the upgrades. The nitrogen (δ15N) and carbon (δ13C) stable isotope measurements of particulate matter served as a proxy for phytoplankton, while macroalgae served as short-term integrators of water column bio-available N, and hard clams (Mercenaria mercenaria) as integrators of water column production. In contrast to other estuarine stable isotope studies that have observed an increased influence of isotopically lower marine N when sewage N is reduced, the opposite has occurred in Narragansett Bay. The tertiary treatment upgrades have increased the effluent δ15N values by at least 2‰. The plants and animals throughout Narragansett Bay have similarly increased by 1–2‰, on average. In contrast, the δ13C values measured in particulate matter and hard clams have declined by about the same amount. The δ15N results indicated that, even after the N reductions, sewage N still plays an important role in supporting primary and secondary production throughout the bay. However, the δ13C suggests that overall net production in Narragansett Bay has decreased. In the 5 years after the major wastewater treatment facilities came on-line for nutrient removal, oligotrophication has begun but sewage remains the dominant source of N to Narragansett Bay.  相似文献   

20.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号