首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
The Tanami Region, a poorly exposed, mostly Paleoproterozoic province within the North Australian Craton, hosts a number of significant gold deposits in diverse settings. Rare exposures of 2,520–2,500 Ma amphibolite facies Archean gneiss and metasedimentary rocks form basement to the thick overlying metasedimentary succession of the 1,880–1,830 Ma Tanami Group. The basal unit of the Tanami Group is the Dead Bullock Formation, a fining-upward deep-water succession dominated by siltstone, carbonaceous siltstone, iron-rich siltstone and mafic sills. Carbonaceous- and iron-rich lithologies in the upper Dead Bullock Formation represent important hosts for gold mineralization. The conformably overlying Killi Killi Formation represents turbiditic sedimentary rocks that are correlated with the widespread Lander Rock beds of the Arunta Region. Sedimentation of the Tanami Group was terminated by regional deformation and greenschist to amphibolite facies metamorphism during the Tanami Event (D1/M1), at around 1,830 Ma. The Tanami Group is unconformably overlain by rhyolite, siliciclastic sedimentary rocks, and felsic ignimbrite of the Ware Group that were deposited at about 1,825–1,810 Ma. Subsequent ESE–WNW to SE–NW directed shortening (D2), followed by NE–SW to E–W directed shortening (D3), has resulted in open NE F2- and NW F3-trending folds in both the Tanami and Ware Groups. Voluminous granitoids, dominated by I-type, biotite granodiorite, and monzogranite were intruded in the interval 1,825–1,790 Ma and have been subdivided using geochemical criteria into the Birthday, Frederick, and Grimwade Suites. Basalt and immature sedimentary rocks of the Mount Charles Formation are restricted in extent to the Tanami mine corridor, and are interpreted to reflect a continental rift succession that was deposited around 1,800 Ma, with an early Archean sedimentary provenance. Steep S to SE dipping F4-fold structures of Tanami and Ware Group metasedimentary rocks, many spatially associated with 1,825–1,790 Ma granitoid intrusions, indicate a period of SSE-directed regional shortening (D4) syn-to-post the regional granitoid intrusive phase. A network of N to NW striking faults, several of which are interpreted as oblique thrusts with a component of left lateral movement, indicates a period of D5 convergence during WSW–ENE to E–W directed shortening. The Tanami mine corridor fault system comprises a network of N, NE to ENE striking D5 faults that merge with N to NW striking faults and probably accommodated movement between granite core domains. D5 faulting is associated with the main phase of gold mineralization in suitable structural–lithological traps. The Paleoproterozoic basement of the Tanami Region is unconformably overlain by quartz sandstone, lithic arenite, and conglomerate of the Pargee Sandstone. Pargee Sandstone may represent syn-tectonic sedimentation related to the 1,730 Ma Strangways Orogeny, and is unconformably overlain by the late Paleoproterozoic platform cover succession of the Birrindudu Group. The Paleoproterozoic basement and cover sequences have subsequently undergone several episodes of faulting, collectively termed D6+. The Paleoproterozoic evolution of the Tanami Region is interpreted to have occurred in an intracratonic setting, but was fundamentally influenced by tectonic events in the adjacent Halls Creek Orogen (1,835–1,805 Ma Halls Creek Orogeny) and Arunta Region (1,815–1,800 Ma Stafford Event). The boundaries between the Tanami Region and Kimberley Region to the northwest and the Arunta Region to the southeast are transitional, and are largely defined by the presence or absence of identifiable Dead Bullock Formation.  相似文献   

2.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   

3.
The ore deposits of The Granites goldfield are shear-hosted within Palaeoproterozoic amphibolite facies metasedimentary rocks in the Tanami Region, Northern Territory, Australia. The ore bodies are located within a 5- to 35-m thick sequence of steeply dipping unit of metamorphosed iron-rich metasedimentary rocks. Deformation at The Granites was complex and is characterized by five successive deformation phases (D1–5). Shear veins (central and oblique) are the dominant type of vein geometry, with minor development of extensional veins and reverse-fault related veins. Four generations of syn-tectonic veins, corresponding to D1, D3, D4, and D5, have been recognized and are comprised of quartz, quartz-carbonate, calc-silicate, and calcite. In addition, two generations of disseminated sulfide–arsenide mineralization, dominated by pyrrhotite, arsenopyrite, and loellingite, with minor pyrite, chalcopyrite and rare marcasite, formed syn-D1 and syn- to post-D3. Textural and structural evidence indicates deposition of gold was contemporaneous with the syn-D1 veins and sulfide–arsenide mineralization. Four hydrothermal phases are proposed for the formation of the veins and disseminated sulfide–arsenide assemblages. The first phase (D1) was responsible for transport and deposition of the majority of the gold. Minor remobilization and deposition of gold occurred during the D3 and D4 phases. Little is known about the nature of the D1 ore fluid, although a relatively low sulfur content is indicated by the assemblage pyrrhotite–arsenopyrite–loellingite+rare pyrite. The growth of amphibolite facies metamorphic minerals andalusite and almandine garnet during D1 indicates a high temperature for the fluid. The D3 hydrothermal phase coincided with peak metamorphism. D4 fluids were hypersaline, high temperature, CO2-poor, and H2S-poor. Editorial handling: L. Meinert  相似文献   

4.
据近期成果,贺兰山—阿拉善地区出露的巨厚变质杂岩可划分为中太古界贺兰山群和叠布斯格群(其全岩Rb—Sr等时年龄为3108.3和3218.8Ma),上太古界阿拉善群和下元古界的赵池沟群、阿拉坦敖包群;它们具不同的变质矿物共生组合,太古界变质岩属低压高温变质的麻粒岩相;下元古界为低—低中压区域动力(热流)变质的绿片岩相岩石。太古界有较强的混合岩化、花岗岩化作用,并蕴藏有铁、石墨、矽线石、刚玉等多种矿产。  相似文献   

5.
The Corinthia lode‐gold deposit in amphibolite‐facies greenstone belt rocks in the Southern Cross Province of the Archaean Yilgarn Block contains a largely undeformed pegmatite dyke emplaced during the last phases of movement along the Fraser's‐Corinthia shear zone. Gold mineralization and shear zone development were synchronous, and a Pb‐Pb isochron age of 2620 ±6 Ma for pegmatite emplacement either indirectly dates mineralization, or places a minimum age constraint on the timing of mineralization. This age is in accord with a broadly synchronous dominant episode of Archaean lode‐gold mineralization throughout the Yilgarn Block.  相似文献   

6.
北秦岭松树沟榴辉岩的确定及其地质意义   总被引:9,自引:8,他引:1  
陈丹玲  任云飞  宫相宽  刘良  高胜 《岩石学报》2015,31(7):1841-1854
松树沟石榴石角闪岩(榴闪岩)呈透镜状产于松树沟超镁铁岩旁侧的斜长角闪岩中,一直以来被认为是形成于接触交代变质或麻粒岩相变质过程。详细岩相学及矿物元素分析,在榴闪岩的基质矿物、石榴石幔部及锆石包体中发现残留的绿辉石,而且石榴石也保存了明显的进变质主、微量元素成分环带,表明松树沟榴闪岩为榴辉岩退变质的产物,至少经历了从角闪岩相到榴辉岩相再到角闪岩相的三阶段顺时针PT演化过程。锆石定年结果得到榴辉岩的变质年龄为500±8Ma,原岩结晶时代为796±16Ma,与秦岭岩群北侧官坡超高压榴辉岩的变质年龄和原岩年龄完全一致,也与北秦岭区域高压-超高压变质时代和原岩的结晶时代一致。表明松树沟榴辉岩与北秦岭造山带已发现的高压-超高压变质岩石一起都应是古生代大陆深俯冲作用的结果,而松树沟超镁铁岩可能是俯冲的大陆板片在折返过程中携带的俯冲隧道中的交代地幔岩。  相似文献   

7.
点苍山变质杂岩新生代变质-变形演化及其区域构造内涵   总被引:3,自引:2,他引:1  
点苍山变质杂岩体是哀牢山-红河韧性剪切带四个变质杂岩体之一,遭受了多期多阶段变质-变形作用改造。本文重点针对点苍山杂岩的新生代变质-变形作用,尤其是以富铝质高级变质岩即夕线石榴黑云片麻岩和侵位于其中的糜棱岩化细晶花岗质岩石开展了深入研究。对夕线石榴黑云片麻岩的显微构造分析与矿物共生组合研究,确定了高角闪岩相和低角闪岩相变质矿物共生组合,分别为:石榴石(Grt)+夕线石(Sil)+钾长石(Kfs)+黑云母(Bi)+斜长石(Pl)±石英(Q)和夕线石(Sil)+白云母(Ms)+黑云母(Bi)+石英(Q)。对其中的变质锆石进行SHRIMP U-Pb测试,获得了新生代三个阶段的变质作用年龄,即54.2±1.7Ma、31.5±1.5Ma和27.5±1.2Ma.本文还深入研究了侵位于高级变质岩中的一个花岗岩质糜棱岩的宏观与显微构造特点,其LA-ICP-MS年龄为24.4±0.89Ma,代表着同剪切就位花岗质岩浆侵位和结晶年龄。夕线石榴黑云片麻岩中变质锆石从2150~27Ma多期多阶段表观年龄的发育,表明点苍山变质杂岩体具有复杂的构造演化史。点苍山杂岩的多阶段新生代构造-热演化归咎于印度-欧亚板块会聚与碰撞作用(约54Ma)、造山后伸展作用(大约40~30Ma)和沿着哀牢山-红河剪切带大规模左行走滑变形作用(约27~21Ma)。  相似文献   

8.
         下载免费PDF全文
老湾金矿带位于桐柏-大别造山带北缘,是一个由前寒武系绿帘角闪岩相、角闪岩相和麻粒岩相组成的中-低P/T变质带。通过对老湾金矿带变质岩产状、岩石组合特征、岩相学、岩石地球化学特征等进行综合研究,探讨了该区的变质岩原岩及其形成过程。研究结果表明:1)老湾金矿带龟山岩组斜长角闪岩类原岩为大陆拉斑玄武岩(玄武质熔岩)、火山碎屑岩及少量基性岩脉;云母石英片岩类原岩为中性泥质岩、砂岩等沉积岩;大理岩原岩为纯净的白云岩。2)龟山岩组形成于中-新元古代(920 Ma±),经历了志留纪(410 Ma±)、石炭纪(314 Ma±)、白垩纪(130 Ma±)三期变质作用,龟山岩组变质岩是其先就位于地壳中的原岩后来发生陆壳俯冲再折返抬升退变质的产物。  相似文献   

9.
陈杨  范裕  刘青  李朝维  黄岩  陈曦  王彪  刘一男 《矿床地质》2018,37(6):1217-1236
安徽省北部蚌埠隆起区被认为是山东胶东招远金成矿带以西的延伸部分,但蚌埠隆起区内之前一直未发现成规模的金矿床。江山金矿床是最近新发现的中型金矿床,区内成矿作用的时代、赋矿地层的归属仍缺乏系统的年代学证据。文章对蚌埠隆起区内江山金矿床的赋矿地层和相关岩浆岩开展系统的年代学研究,明确了赋矿地层时代归属,并限定了成矿时代的上限和下限。矿床赋矿围岩浅粒岩的结晶年龄为(2496±19)Ma,变质年龄为(2452±47)Ma;斜长角闪岩的变质年龄为(1824±11)Ma,对比区域地层岩性和时代,确定矿床的赋矿围岩为新太古代五河群西堌堆组,而非过去认为的庄子里组。矿床中穿切矿体的脉岩花岗闪长斑岩的结晶年龄为(121.2±1.4)Ma,代表成矿时代的下限;赋矿岩体巨斑花岗斑岩的结晶年龄为(128.3±1.7)Ma,代表了成矿时代的上限。通过与胶东金成矿带的对比,认为蚌埠隆起区与胶东地区的前寒武纪变质基底演化历史相似,江山金矿床的成矿作用类型属于胶东焦家式金矿,在此基础上,推测蚌埠隆起区西芦山岩体和淮光岩体有较大的成矿潜力。  相似文献   

10.
内蒙古锡林浩特岩群岩石学特征及变质温压条件   总被引:4,自引:0,他引:4       下载免费PDF全文
锡林浩特岩群出露于内蒙古锡林浩特市东南部,指原锡林郭勒杂岩中表壳岩部分,为一套片麻岩夹层状斜长角闪岩、磁铁石英岩和变粒岩等的变质岩组合。选取岩群中片麻岩及斜长角闪岩进行岩石学及岩相学分析,其中斜长角闪岩主要矿物组合为角闪石+斜长石;片麻岩样品中见夕线石+钾长石矿物组合,石榴子石具明显进变质环带,所以在计算其形成条件时选取了生长于峰期变质阶段的特定部位。运用角闪石斜长石、石榴子石黑云母矿物温压计分别估算锡林浩特岩群中准同时形成的变质基性火山岩及变质碎屑岩的变质温压区间。综合二者计算结果,得锡林浩特岩群峰期变质温压条件为660~707 ℃,0.5~0.6 GPa。变质达高角闪岩相。其变质年龄为1 000 Ma左右,推测锡林浩特岩群角闪岩相变质为中元古代末期锡林浩特微陆块与其他陆块碰撞的结果。  相似文献   

11.
SHRIMP U–Pb zircon ages are reported from a paragneiss, a pegmatite, a metasomatised metasediment and an amphibolite taken from the upper amphibolite facies host sequence of the Cannington Ag–Pb–Zn deposit at the southeastern margin of the Proterozoic Mt Isa Block. Also reported are ages from a middle amphibolite‐facies metasediment from the Soldiers Cap Group approximately 90 km north of Cannington. The predominantly metasedimentary host rocks of the Cannington deposit were eroded from a terrane containing latest Archaean to earliest Palaeoproterozoic (ca 2600–2300 Ma) and Palaeoproterozoic (ca 1750–1700 Ma) zircon. The ca 1750–1700 Ma group of zircons are consistent with sedimentary provenance from rocks of Cover Sequence 2 age that are now exposed to the north and west of the Cannington deposit. The metasedimentary samples also include a group of zircon grains at ca 1675 Ma, which we interpret as the maximum depositional age of the sedimentary protolith. This is comparable to the maximum depositional age of the metasediment from the Maronan area (ca 1665 Ma) and to previously published data from the Soldiers Cap Group. Metamorphic zircon rims and new zircon grains grew at 1600–1580 Ma during upper amphibolite‐facies metamorphism in metasedimentary and mafic magmatic rocks. Zircon inheritance patterns suggest that sheet‐like pegmatitic intrusions were most likely derived from partial melting of the surrounding metasediments during this period of metamorphism. Some zircon grains from the amphibolite have a morphology consistent with partially recrystallised igneous grains and have apparent ages close to the metamorphic age, although it is not clear whether these represent metamorphic resetting or crystallisation of the magmatic protolith. Pb‐loss during syn‐ to post‐metamorphic metasomatism resulted in partial resetting of zircons from the metasomatised metasediment.  相似文献   

12.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

13.
Two contrasting styles of metamorphism are preserved in the central Southern Cross Province. An early, low‐grade and low‐strain event prevailed in the central parts of the Marda greenstone belt and was broadly synchronous with the first major folding event (D1) in the region. Mineral assemblages similar to those encountered in sea‐floor alteration are indicative of mostly prehnite‐pumpellyite facies conditions, but locally actinolite‐bearing assemblages suggest conditions up to mid‐greenschist facies. Geothermobarometry indicates that peak metamorphic conditions were of the order of 250–300°C at pressures below 180 MPa in the prehnite‐pumpellyite facies, but may have been as high as 400°C at 220 MPa in the greenschist facies. A later, higher grade, high‐strain metamorphic event was largely confined to the margins of the greenstone belts. Mineral assemblages and geothermobarometry suggest conditions from upper greenschist facies at P–T conditions of about 500°C and 220 MPa to upper amphibolite facies at 670°C and 400 MPa. Critical mineral reactions in metapelitic rocks suggest clockwise P–T paths. Metamorphism was diachronous across the metamorphic domains. Peak metamorphic conditions were reached relatively early in the low‐grade terrains, but outlasted most of the deformation in the higher grade terrains. Early metamorphism is interpreted to be a low‐strain, ocean‐floor‐style alteration event in a basin with high heat flow. In contrast, differential uplift of the granitoids and greenstones, with conductive heat input from the granitoids into the greenstones, is the preferred explanation for the distribution and timing of the high‐strain metamorphism in this region.  相似文献   

14.
《Ore Geology Reviews》2008,33(3-4):543-570
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

15.
The late Paleozoic Wudaogou Group, one of the oldest metamorphic units in the eastern Yanbian area, has important tectonic and metallogenic significance. Here, we provide new insights into their protoliths, tectonic setting of the metamorphic rocks and their relationships with the gold and tungsten mineralization, using new petrographic and whole‐rock geochemical data for various lithologies within the Wudaogou Group. The protolith of the metamorphic rocks of the Wudaogou Group was intermediate–basic volcanic rocks (e.g. basaltic andesite, trachyandesite, and basalt) and sedimentary rocks including argillaceous rocks, quartz sandstone, arkose and clayish greywacke, as well as pyroclastic sedimentary rock, covering tuffaceous sandstone. Before undergoing late Paleozoic epidote–amphibolite facies regional metamorphism, these protoliths were formed during the middle–late Permian in an island arc setting within a continental margin collage zone. Combined with the regional tectonic evolution, it can be speculated that the formation and the subsequent metamorphism of the protoliths of the metamorphic rocks from the Wudaogou Group were influenced by the change from subduction to collision of the Paleo‐Asian Ocean. Similarities of the rare earth element (REE) patterns and parameters among the metamorphic rocks within the Wudaogou Group, auriferous ores from the Xiaoxi'nancha gold (copper) deposit, and scheelites from the Yangjingou tungsten deposit, together with the favorable metallogenic element contents within the metamorphic rock series, imply that the Wudaogou Group could provide parts of metallic material for the gold and tungsten mineralization in the eastern Yanbian area, as exemplified by the Yangjingou deposit and Xiaoxi'nancha deposit, respectively. Further, the metamorphic sedimentary rocks, especially the metamorphic sandstones, quartz schists and quartz mica schists within the Wudaogou Group, have closer genetic relationships with the Yangjingou tungsten mineralization. However, the specific lithologies within this group which control the gold mineralization are still uncertain, and need further research.  相似文献   

16.
Orogenic gold (Au) deposits are the most important type, accounting for more than half of the world's proven Au reserves. They are mainly controlled by three key factors: (1) abundant andesitic rocks (SiO2 of 55–60 wt.%) at depth, which have systematically higher Au contents than other rock types; (2) a pervasive transition from greenschist facies to amphibolite facies metamorphism within a short period, which releases S2?-rich fluids that may scavenge Au from host rocks; and (3) deformation and fracturing under a compressive/transpressive tectonic regime. Orogenic belts at convergent margins are the best places for such mineralization because convergent margins are rich in andesites; the transition from greenschist to amphibolite facies recrystallization commonly occurs as a result of collision, compression, and thickening at convergent margins, forming large amounts of Au-rich fluids within a short period of time; and strong deformation and fracturing during orogenic processes provide channels for fluid transportation. Moreover, the overlying plate is injected and enriched by auriferous fluids released during amphibolite facies metamorphism of the subducting plate. The Pacific plate changed course by ~80° (from SW to NW) at approximately 125–122 Ma, reflecting an altered thermal structure and the elevation of the South Pacific plate attending the appearance of the plume head that formed the Ontong Java large igneous province. Consequently, the tectonic regime changed from extension to compressive/transpressive in eastern China, causing deformation, thickening, and metamorphism of the overriding plate, especially along weak crustal belts (e.g. overlying plates of palaeosutures), which resulted in world-class mineralization of orogenic Au deposits. During this process, pyrite changed to pyrrhotite during the transition from greenschist to amphibolite facies, releasing sulphur. Sulphur mobilized and scavenged Au and other chalcophile elements into metamorphic ore-forming fluids. A series of NE-trending compressive faults were formed at ?120 Ma as a result of continuous compression of the subducting Pacific plate, releasing these ore-forming fluids. Auriferous carbonate-rich quartz veins and/or metasomatized Au-bearing wall rocks were formed due to the decompression of the ascending ore-forming fluids. Orogenic belts along the margins of the North China craton and the Jiangnan block were the most favourable regions for mineralization. Compared with the former, the latter has much smaller proven Au reserves. However, more exploration is needed along the margins of the Jiangnan block. Promising targets include accessory faults and kink points of large, NE-trending Cretaceous faults that transect greenschist facies metamorphic rocks of the Niuwu and Jingtan Groups, etc.  相似文献   

17.
The SHRIMP-II zircon U-Pb dates for metamorphic rocks from the West Siberian basement are determined for the first time. It is established that the major protolith of the metamorphic strata from the Shaimsk-Kuznetsovsk meganticlinorium is composed of sedimentary Late- and Middle-Devonian rocks (395–398 Ma). It is likely that the greywackes, whose strata were mainly formed under erosion of ophiolitic rocks, served as a substrate for the metamorphic rocks. The metamorphic transformations of the rocks occurred under conditions of greenschist and occasionally lower amphibolite facies of metamorphism during the Late Carboniferous-Early Permian period.  相似文献   

18.
Detailed mineralogical and petrochemical studies show that the Laoniugou gneiss of the Jiapigou gold mine is composed mainly of plagioclase gneiss and irregular to lentiform plagioclase amphibolite melanic enclaves.The major element contents show an obvious bimodal and trondhjemitic series evolutional trend.This situation is significantly different from that encountered in bimodal calc-alkalic volcanic rocks in the rift-type Archaean greenstone belt.The contents of Rb,Sr and Ba are 7-21 ppm,153-363ppm and 201-1451 ppm respectively ,close to those of common Archaean grey gneisses.All the samples of plagioclase gneisses show positive Eu anomalies (even up to 4.6).The protoliths of the plagioclase gneiss are high-Al2O3 trondhjemitic series rocks,belonging to typical TTG of Archaean high-grade metamorphic terrain .The gneiss is quite similar to the B-type Amitsoq gneiss of W.Greenland .The authors believe that the plagioclase amphibolite enclaves are the relics of ancient oceanic crust while the plagioclase gneiss is the TTG ancient intrusive rock resulting from partial melting of the oceanic crust.  相似文献   

19.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   

20.
抚顺南部早前寒武纪变质杂岩的地质事件序列   总被引:8,自引:7,他引:1  
白翔  刘树文  阎明  张立飞  王伟  郭荣荣  郭博然 《岩石学报》2014,30(10):2905-2924
抚顺南部早前寒武纪变质杂岩是华北克拉通北缘辽北-吉南早前寒武纪变质地块的一个重要组成部分,主要由浑南群石棚子组角闪岩相变质火山岩、火山碎屑岩及相伴生的沉积岩等表壳岩系和侵位于其中的石英闪长质片麻岩、英云闪长质-奥长花岗质-花岗闪长质(TTG)片麻岩和花岗闪长岩-二长花岗岩-钾长花岗岩岩石组合组成。LA-ICP-MS锆石U-Pb同位素分析结果显示,侵位于表壳岩中的石英闪长质片麻岩样品12LN39-3的岩浆结晶年龄为2571±7Ma,指示存在老于该年龄的表壳岩系。英云闪长质片麻岩样品12LN04-1和奥长花岗质片麻岩样品13LB49-3的岩浆结晶年龄分别为2544±4Ma和2550±10Ma,记录了一期重要的英云闪长质-奥长花岗质片麻岩侵位事件。斜长角闪岩(样品12LN25-2)的岩浆结晶的最小年龄为2530±5Ma,指示另一火山喷发阶段。晚期钾长花岗岩样品12LN01-1和奥长花岗质片麻岩样品12LN27-1分别侵位于2522±4Ma和2518±23Ma,说明它们的岩浆作用发生于同一时期。而采自于晚期未变形侵入体的石英闪长岩样品12LN30-2的岩浆结晶年龄为2496±18Ma,与上述表壳岩和深成侵入体的主要变质作用(2510~2470Ma)同期发生。这些年代学结果表明,抚顺南部地区新太古代大规模的铁镁质火山喷发作用在大于2571±7Ma已经发生,紧接着2571±7Ma发生石英闪长质岩浆侵位,在2550±10Ma~2544±4Ma之间发生英云闪长质-奥长花岗质岩浆侵位。接下来铁镁质火山再度喷发(~2530±5Ma),随后为钾长花岗岩和奥长花岗质岩浆的侵位(2522±4Ma~2518±23Ma)。晚期为角闪岩相变质作用时期(2510~2470Ma),伴随一定规模的石英闪长岩侵位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号