首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   

2.
The production of large volumes of fluid from metabasic rocks, particularly in greenstone terranes heated across the greenschist–amphibolite facies transition, is widely accepted yet poorly characterized. The presence of carbonate minerals in such rocks, commonly as a consequence of sea‐floor alteration, has a strong influence, via fluid‐rock buffering, on the mineral equilibria evolution and fluid composition. Mineral equilibria modelling of metabasic rocks in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐CO2‐H2O (NCaFMASCH) is used to constrain the stability of common metabasic assemblages. Calculated buffering paths on TXCO2 pseudosections, illustrate the evolution of greenstone terranes during heating across the greenschist‐amphibolite transition. The calculated paths constrain the volume and the composition of fluid produced by devolatilization and buffering. The calculated amount and composition of fluid produced are shown to vary depending on PT conditions, the proportion of carbonate minerals and the XCO2 of the rocks prior to prograde metamorphism. In rocks with an initially low proportion of carbonate minerals, the greenschist to amphibolite facies transition is the primary period of fluid production, producing fluid with a low XCO2. Rocks with greater initial proportions of carbonate minerals experience a second fluid production event at temperatures above the greenschist to amphibolite facies transition, producing a more CO2‐rich fluid (XCO2 = 0.2–0.3). Rocks may achieve these higher proportions of carbonate minerals either via more extensive seafloor alteration or via infiltration of fluids. Fluid produced via devolatilization of rocks at deeper crustal levels may infiltrate and react with overlying lower temperature rocks, resulting in external buffering of those rocks to higher XCO2 and proportions of carbonate minerals. Subsequent heating and devolatilization of these overlying rocks results in buffering paths that produce large proportions of fluid at XCO2 = 0.2–0.3. The production of fluid of this composition is of importance to models of gold transport in Archean greenstone gold deposits occurring within extensive fluid alteration haloes, as these haloes represent the influx of fluid of XCO2 = 0.2–0.3 into the upper crust.  相似文献   

3.
Mineral equilibria modeling involving solid solution calculations has been combined with mineral assemblage information from the alteration zones associated with gold mineralization to determine the T and X CO2 conditions for the formation of the Magdala gold deposit at Stawell, Victoria, Australia. Economic gold mineralization is primarily hosted within the stilpnomelane alteration zone of the Stawell Facies that is adjacent to the Magdala Basalt. Evolution of the Magdala gold deposit involved at least three fluid infiltration events: (1) a CO2-bearing fluid during the D2 deformation event produced carbonate spots throughout the chlorite zone; (2) a CO2–S–K-bearing fluid, accompanied the D3–4ab deformation and produced a muscovite zone and siderite rims on ankerite; and (3) a CO2–K–S–Au-bearing fluid during the D4c deformation event produced the stilpnomelane zone of the Stawell Facies, the proximal and distal alteration zones within the Magdala Basalt, and the main economic gold mineralization. Mineral equilibria modeling constrains the temperature of formation of the Magdala deposit to T = 345–390°C at 3kbar, substantially lower than indicated by other previous classical thermobarometry methods. Furthermore, this method has allowed the characterization of the mineralizing fluid and constrained its composition to X CO2 < 0.08 at 3kbar. The timing and composition of the mineralizing fluids are similar to that of metamorphic fluid generated from devolatilization of a greenstone pile with peak of metamorphism occurring earlier and at deeper levels in the crust.  相似文献   

4.
The New Consort Gold Mine in the Palaeo- to Mesoarchaean Barberton greenstone belt, South Africa is one of the oldest recognized orogenic gold deposits on Earth. The gold mineralization is hosted by discrete mylonitic units that occur at, or close to, the contact between the mafic and ultramafic volcanic rocks of the c. 3,280 Ma Onverwacht Group and the mainly metasedimentary rocks of the overlying c. 3,260–3,230 Ma Fig Tree Group. This contact, locally referred to as the Consort Bar, formed during ductile D1 imbrication of the metavolcanosedimentary sequence and predates the main stage of the gold mineralization. The imbricate stack is situated in the immediate hanging wall of the basal granitoid–greenstone contact along the northern margin of the greenstone belt. It is characterized by a condensed metamorphic profile in which the metamorphic grade increases from upper greenschist facies conditions (510–530°C, 4 kbar) in rocks of the Fig Tree Group to upper amphibolite facies grades (600–700°C, 6–8 kbar) in the basal Onverwacht Group. Detailed structural and petrological investigations indicate that the Consort Bar represents a major structural break, which is largely responsible for the telescoping of metamorphic isograds within the structural sequence. Two stages of mineralization can be distinguished. Loellingite, pyrrhotite, and a calc–silicate alteration assemblage characterize an early high-T mineralization event, which is restricted to upper amphibolite facies rocks of the Onverwacht Group. This early mineralization may correlate with the local D1 deformation. The second and main stage of gold mineralization was associated with renewed ductile shearing during D2. The D2 deformation resulted in the reactivation of earlier structures, and the formation of a NNW trending, steeply dipping shear zone system, the Shires Shear Zone, which separates two regional SE plunging D1 synclines. The mineralized shear zones are intruded by abundant syn-kinematic pegmatite dykes that have previously been dated at c. 3040 Ma. Petrological and geothermobarometric data on ore and alteration assemblages indicate that the main stage of gold mineralization, which affected a crustal profile of ca. 1.5 km, was characterized by increasing temperatures (c. 520 to 600°C) with increasing structural depth. Sulfide assemblages in the ore bodies change progressively with metamorphic grade, ranging from arsenopyrite + pyrite + pyrrhotite in the structurally highest to arsenopyrite + pyrrhotite + chalcopyrite + loellingite in the structurally deepest part of the mine. The main stage of gold mineralization was broadly syn-peak metamorphic with respect to the Fig Tree Group, but postdates the peak of metamorphism in upper amphibolite facies rocks of the structurally underlying Onverwacht Group. This indicates that the mineralization coincided with the juxtaposition of the two units. As the footwall rocks were already on their retrograde path, metamorphic devolatilisation reactions within the greenstone sequence can be ruled out as the source of the mineralizing fluids.  相似文献   

5.
Gold deposits occur in greenstone belts world wide, and contribute to anomalously high gold production from Archaean terranes. As in other cratons, Archaean gold mineralization of Western Australia represents a complex array of deposit styles. Despite this, most deposits are clearly epigenetic, and large deposits have a number of features in common, including their strong structural controls, distinctive wallrock alteration (Fe-sulphide, K-mica±albite, Ca---Mg---Fe carbonates), consistent metal associations (Au---Ag---As---Sb---W---B; low base metals), commonly Fe-rich host rocks, great depth extension and lack of appreciable vertical zonation. These shared characteristics, combined with their ubiquitous occurrence, indicate that Archaean gold deposits had a common origin related to the tectonic evolution of greenstone belts.Auriferous hydrothermal systems were broadly synchronous with regional metamorphism and emplacement of synkinematic granitoids and felsic (porphyry) intrusions. Although these gold systems involved low-salinity, lowdensity, reduced, near-neutral H2O---CO2 fluids carrying gold as reduced sulphur complexes, the origin of the fluids is equivocal. Most timing evidence and stable isotope data cannot distinguish metamorphic from magmatic (granitoid or felsic porphyry) orggins, but the lack of consistent spatial relationships between specific, volumetrically significant intrusive phases and large gold deposits in a number of cratons strongly favours metamorphic derivation of fluids.The metamorphic-replacement model for gold mineralization involves devolatilization of the lower portions of the greenstone pile, with high geothermal gradients inhibiting significant melting. CO2 possibly formed by the decarbonation of early alteration, related to mantle degassing along crustal-scale, synbasinal fault zones. Auriferous fluids were channelled along greenstone-scale faults, in part developed during reactivation of crustal-scale faults in a strike-slip regime. Gold deposition occurred largely under greenschist facies conditions (about 300–400°C, 1–2 kb) in response to decreasing gold solubility with declining temperature. However, a major control on gold deposition was fluid/wallrock interaction. Many large deposits formed by sulphidation of Fe-rich host rocks, with synchronous deposition of Fe-sulphides and gold. However, the variable nature of gold-depositing reactions, including lowering of fO2 and pH, allowed a multitude of small, and some large, deposits to form wherever that fluid circulation occurred. In consequence, several of the relatively small deposits currently worked from open pit are hosted by ultramafic and felsic rocks. There are few constraints on the source of components (Au, S, K, CO2) added to gold deposits, but even giant deposits such as the Golden Mile, Kalgoorlie could have formed from a realistic greenstone source volume (ca. 8×8×5 km). Convective circulation of fluids could have contributed to the generation of high fluid-rock ratios.On the regional scale, the markedly heterogeneous distribution of large gold deposits, gold productivity and host rocks to deposits can be accommodated by the metamorphic-replacement model. The most favourable conditions for development of auriferous hydrothermal systems operated in younger (ca. 2.7±0.1 Ga) rift-phase greenstones where greatest extension and crustal thinning produced high geothermal gradients, crustal-scale synbasinal faults, and rapid extrusion and burial of volcanics, including abundant komatiites. Iron-rich tholeiitic basalts and dolerites were preferred host rocks for large gold deposits. The least favourable conditions existed in older (ca. 3.5-3.4 Ga) platformphase greenstones, where gentle sagging on submerged continental crust produced eruption of mainly mafic volcanics with few komatiites, commonly in very shallow-water environments. This allowed intense synvolcanic alteration of both gold source rocks and potential host rocks. The generally smaller gold deposits formed mainly in ultramafic or greywacke hosts. Younger (ca. 3.0 Ga) platform-phase greenstones appear intermediate in nature but, unlike other greenstones, have significant epigenetic gold deposits in originally oxide-facies BIF, which were deposited on relatively deep-water platforms. Similar controls appear to exist on a world scale, with gold mineralization peaking at ca. 2.7±0.1 Ga in response to development of major rift zones in thickened, relatively mature continental crust. Interestingly, the giant Witwatersrand goldfield formed at about the same time.  相似文献   

6.
Until the middle of the 20th century, the continental crust was considered to be dominantly granitic. This hypothesis was revised after the Second World War when several new studies led to the realization that the continental crust is dominantly made of metamorphic rocks. Magmatic rocks were emplaced at peak metamorphic conditions in domains, which can be defined by geophysical discontinuities. Low to medium-grade metamorphic rocks constitute the upper crust, granitic migmatites and intrusive granites occur in the middle crust, and the lower crust, situated between the Conrad and Moho discontinuities, comprises charnockites and granulites. The continental crust acquired its final structure during metamorphic episodes associated with mantle upwelling, which mostly occurred in supercontinents prior to their disruption, during which the base of the crust experienced ultrahigh temperatures (>1000 °C, ultrahigh temperature granulite-facies metamorphism). Heat is provided by underplating of mantle-derived mafic magmas, as well as by a massive influx of low H2O activity mantle fluids, i.e. high-density CO2 and high-salinity brines. These fluids are initially stored in ultrahigh temperature domains, and subsequently infiltrate the lower crust, where they generate anhydrous granulite mineral assemblages. The brines can reach upper crustal levels, possibly even the surface, along major shear zones, where granitoids are generated through brine streaming in addition to those formed by dehydration melting in upper crustal levels.  相似文献   

7.
Formation of gold deposits: a metamorphic devolatilization model   总被引:5,自引:0,他引:5  
A metamorphic devolatilization model can explain the enrichment, segregation, timing, distribution and character of many goldfields such as those found in Archean greenstone belts, slate‐belts and other gold‐only provinces. In this genetic model, hydrated and carbonated greenschist facies rocks, particularly metabasic rocks, are devolatilized primarily across the greenschist–amphibolite facies boundary in an orogenic setting. Devolatilization operates on the scale of individual mineral grains, extracting not just H2O and CO2 but also S and, in turn, Au. Elevated gold in solution is achieved by complexing with reduced S, and by H2CO3 weak acid buffering near the optimal fluid pH for gold solubility (the buffering is more important than being at the point of maximum gold solubility). Low salinity ensures low base metal concentrations in the auriferous metamorphic fluid. Migration of this fluid upwards is via shear zones and/or into hydraulic fracture zones in rocks of low tensile strength. The geometry of the shear zones dictates the kilometre‐scale fluid migration paths and the degree of fluid focusing into small enough volumes to form economic accumulations of gold. Deposition of gold from solution necessitates breakdown of the gold–thiosulphide complex and is especially facilitated by fluid reduction in contact with reduced carbon‐bearing host rocks and/or by sulphidation of wallrocks to generate iron‐bearing sulphide and precipitated gold. As such, black slate, carbon seams, banded iron formation, tholeiitic basalt, magnetite‐bearing diorite and differentiated tholeiitic dolerite sills are some of the important hosts to major goldfields. Gold deposition is accompanied by carbonation, sulphidation and muscovite/biotite alteration where the host rock is of suitable bulk composition. The correlation of major gold deposits with rock type, even when the gold is primarily in veins, argues for rock‐dominated depositional systems, not fluid‐dominated ones. As a consequence, a general role in gold deposition for fluid mixing, temperature decrease and/or fluid pressure decrease and boiling is unlikely, although such effects may be involved locally. Several geological features that are recorded at gold‐only deposits today reflect subsequent modifications superimposed upon the products of this generic metamorphic devolatilization process. Overprinting by higher‐grade metamorphism and deformation, and/or (palaeo)‐weathering may provide many of the most‐obvious features of goldfields including their mineralogy, geochemistry, geometry, small‐scale timing features, geophysical response and even mesoscopic gold distribution.  相似文献   

8.
The tectono‐metamorphic evolution of the Hercynian intermediate–upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P–T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P–T paths have been constrained for metapelites of the basal level of the intermediate–upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium‐P metamorphic assemblages (garnet‐ and staurolite‐bearing assemblages) towards low‐P/high‐T metamorphic assemblages (fibrolite‐ and cordierite‐bearing assemblages). Peak‐metamorphic conditions of ~590 °C and 0.35 GPa are estimated by integrating microstructural observations with P–T pseudosections calculated for bulk‐rock and reaction‐domain compositions. The top level of the intermediate–upper crust (Campana area) recorded only the major heating phase at low‐P (~550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U–Th–Pb dating of monazite from schists containing low‐P/high‐T metamorphic assemblages gave a weighted mean U–Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low‐P/high‐T metamorphism in the intermediate‐to‐upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P–T evolution both in the lower and upper crust. It is proposed that post–collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust.  相似文献   

9.
The Hutti gold mine is located in a high-angle, NNW–SSE-trending shear zone system, which hosts nine discrete auriferous shear zones (reefs). On a clockwise, retrograde PT path two separate stages of deformation/metamorphism (D2/M2 and D3/M3) occurred synchronous with two distinct stages of gold mineralization, both of which were associated with different fluid types. Stage 1 mineralization developed during D2/M2, where the amphibolite host rocks were altered by a metamorphic fluid with a $ {{\delta }^{{18}}}{{O}_{{{{H}_2}O}}} $ of 7.5–10.1?‰, rich in K, S, As, and Au at pressure and temperature conditions of around 3 kbar and 530?+?20/?30°C, respectively. The stage 1 auriferous shear zones are enveloped by a zoned alteration consisting of a distal biotite–chlorite and proximal biotite–plagioclase assemblage. Subsequently, D2/M2 was overprinted by D3/M3 deformation and metamorphism at 300–400°C and <2 kbar that formed the stage 2 mineralization. The stage 2 mineralizing fluid which originated from outside the greenstone belt (δ18Ofluid of 3.2–6.8?‰) was rich in Si, Au, and W. This mineralization stage is distinct by the emplacement of laminated quartz veins central to the shear zone, containing locally visible gold at concentrations of up to 1 kg Au/t. The laminated quartz veins are surrounded by a millimeter-scale chlorite2–K-feldspar alteration halo, which replaced the stage 1 biotite–plagioclase assemblage. The oxygen isotopic composition of the stage 2 fluid suggests a mixture of a magmatic fluid with an oxygen isotopic composition in the range of 6 to 10?‰ and an isotopically light formation fluid that resulted from fluid–rock interaction in the greenstone pile. The two fluid fluxes at stages 1 and 2 both contributed to the overall gold mineralization; however, it was the second fluid pulse, which gave the Hutti mine its status as the largest gold mine in India. The metamorphic evolution was thereby important for the first stage, whereas the second stage was controlled by tectonism and intrusion of the high-heat production Yellagatti granite that re-established the fluid plumbing and mineralizing system.  相似文献   

10.
ABSTRACT One-dimensional fluid advection-dispersion models predict differences in the patterns of mineralogical and oxygen isotope resetting during up- and down-temperature metamorphic fluid flow that may, in theory, be used to determine the fluid flow direction with respect to the palaeotemperature gradient. Under equilibrium conditions, down-temperature fluid flow is predicted to produce sharp reaction fronts that separate rocks with isobarically divariant mineral assemblages. In contrast, up-temperature fluid flow may produce extensive zones of isobarically univariant mineral assemblages without sharp reaction fronts. However, during contact metamorphism, mineral reaction rates are probably relatively slow compared with fluid velocities and distended reaction fronts may also form during down-temperature fluid flow. In addition, uncertainties in the timing of fluid flow with respect to the thermal peak of metamorphism and the increase in the variance of mineral assemblages due to solid solutions introduce uncertainties in determining fluid flow directions. Equilibrium down-temperature flow of magmatic fluids in contact aureoles is also predicted to produce sharp δ18O fronts, whereas up-temperature flow of fluids derived by metamorphic devolatilization may produce gradational δ18O vs. distance profiles. However, if fluids are channelled, significant kinematic dispersion occurs, or isotopic equilibrium is not maintained, the patterns of isotopic resetting may be difficult to interpret. The one-dimensional models provide a framework in which to study fluid-rock interaction; however, when some of the complexities inherent in fluid flow systems are taken into account, they may not uniquely distinguish between up- and down-temperature fluid flow. It is probably not possible to determine the fluid flow direction using any single criterion and a range of data is required.  相似文献   

11.
During Hercynian low-pressure/high-temperature metamorphism of Palaeozoic metasediments of the southern Aspromonte (Calabria), a sequence of metamorphic zones at chlorite, biotite, garnet, staurolite–andalusite and sillimanite–muscovite grade was developed. These metasediments represent the upper part of an exposed tilted cross-section through the Hercynian continental crust. P–T information on their metamorphism supplements that already known for the granulite facies lower crust of the section and allows reconstruction of the thermal conditions in the Calabrian crust during the late Hercynian orogenic event. Three foliations formed during deformation of the metasediments. The peak metamorphic assemblages grew mainly syntectonically (S2) during regional metamorphism, but mineral growth outlasted the deformation. This is in accordance with the textural relationships found in the lower part of the same crustal section exposed in the northern Serre. Pressure conditions recorded for the base of the upper crustal metasediments are c. 2.5 kbar and estimated temperatures range from <350 °C in the chlorite zone, increasing to 500 °C in the lower garnet zone, and reaching 620 °C in the sillimanite–muscovite zone. Geothermal gradients for the peak of metamorphism indicate a much higher value for the upper crust (c. 60 °C km?1) than for the granulite facies lower crust (30–35 °C km?1). The small temperature difference between the base of the upper crust (620 °C at c. 2.5 kbar) and the top of the lower crust (690 °C at 5.5 kbar) can be explained by intrusions of granitoids into the middle crust, which, in this crustal section, took place synchronously with the regional metamorphism at c. 310– 295 Ma. It is concluded that the thermal structure of the Calabrian crust during the Hercynian orogeny – as it is reflected by peak metamorphic assemblages – was mainly controlled by advective heat input through magmatic intrusions into all levels of the crust.  相似文献   

12.
造山型金矿研究进展:兼论中国造山型金成矿作用   总被引:1,自引:0,他引:1       下载免费PDF全文
造山型金矿指与大洋板块俯冲和陆块拼贴有关、产在汇聚板块边界变质地体内部或者边缘受韧-脆性断裂构造控制的,成矿流体以低盐度H2O-CO2-CH4为主要特征的,成矿深度(2~20 km)和温度(200~650℃)及其相应的蚀变矿化组合有较大变化的系列金矿床.造山型金矿形成与超大陆聚合时限具有一致性.由于围岩类型和控矿构造多样性、地球化学特征具有多解性、金属源区和演化的不确定性以及成矿就位和物质起源的空间差距,造山型金矿成因模式有以下两个主要观点.第一种为大陆地壳变质流体成因模式,认为造山型金矿形成于造山作用同变质阶段,并随岩石圈演化矿床的物质来源发生变化;富金流体的释放由上地壳岩石绿片岩相到角闪岩相的进变质作用导致,该过程中的黄铁矿向磁黄铁矿转变释放了大量的金,这种模式被广泛运用于赋存在绿片岩相中的显生宙造山型金矿.然而越来越多的实例证实造山型金矿主要形成于峰期变质的退变质阶段或者与区域变质没有任何关系,变质流体成因模式受到了强烈质疑;与大陆地壳变质模式相对立的是幔源流体模式,其认为流体起源于俯冲洋壳脱水或富集地幔再活化,不同时代和地区的成矿流体具有一致性;尽管该模式不符合传统的平衡条件下的相变原理,但是基于幔源流体的存在及其浅部运移的大量观测,初步认为成矿流体是在超临界和非平衡条件下完成了金属的幔→壳迁移.中国造山型金矿分布于江南造山带志留纪、天山-阿尔泰二叠纪、华北克拉通北缘三叠-侏罗纪、特提斯造山带二叠-侏罗纪、华南板块晚三叠世-侏罗纪、华北克拉通东南缘白垩纪、青藏高原及周缘古近纪等七大成矿带,主要受到了显生宙不同时代造山作用的控制,成矿时代晚于变质峰期,重要成矿带大型矿集区(胶东、哀牢山、扬子西缘)的实例解剖均支持幔源流体成因模式.  相似文献   

13.
The Dalradian and Ordovician–Silurian metamorphic basement rocks of southwest Scotland and Northern Ireland host a number of base‐metal sulphide‐bearing vein deposits associated with kilometre‐scale fracture systems. Fluid inclusion microthermometric analysis reveals two distinct fluid types are present at more than half of these deposits. The first is an H2O–CO2–salt fluid, which was probably derived from devolatilization reactions during Caledonian metamorphism. This stage of mineralization in Dalradian rocks was associated with base‐metal deposition and occurred at temperatures between 220 and 360°C and pressures of between 1.6 and 1.9 kbar. Caledonian mineralization in Ordovician–Silurian metamorphic rocks occurred at temperatures between 300 and 360°C and pressures between 0.6 and 1.9 kbar. A later, probably Carboniferous, stage of mineralization was associated with base‐metal sulphide deposition and involved a low to moderate temperature (Th 70 to 240°C), low to moderate salinity (0 to 20 wt% NaCl eq.), H2O–salt fluid. The presence of both fluids at many of the deposits shows that the fractures hosting the deposits acted as long‐term controls for fluid migration and the location of Caledonian metalliferous fluids as well as Carboniferous metalliferous fluids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Using the Selektor-C software program package, oxidation potential and the composition of metamorphogenic fluid were determined for mineral assemblages from nine samples of granulite-grade metamorphic rocks by solving the inverse problems of convex programming. The calculated and real mineral assemblages are in good agreement with respect to the composition and association of minerals, which is compelling evidence for the attainment of chemical equilibrium (minimum of Gibbs free energy) under given P-T conditions. Based on the dual solution of the inverse problem, a new approach was proposed for the estimation of the oxidation potential of fluid and mineral assemblages, which can be used to determine oxygen potential for almost any mineral association, independent of the presence of magnetite, ilmenite, or graphite. It was found that magnetite-free mineral associations are characterized by highly reducing conditions corresponding to oxygen potentials close to the CCO buffer. The external metamorphic fluid that was present during granulite-facies metamorphism was probably formed in the graphite stability field. The results of calculations for the model aqueous electrolyte solution-mineral assemblage suggest high SiO2 solubility in the metamorphogenic fluid. Therefore, the process of granulite metamorphism may be a potent geochemical factor of the redistribution and transportation of silica from lower to upper crustal levels.  相似文献   

15.
The development of shear zones at mid‐crustal levels in the Proterozoic Willyama Supergroup was synchronous with widespread fluid flow resulting in albitization and calcsilicate alteration. Monazite dating of shear zone fabrics reveal that they formed at 1582 ± 22 Ma, at the end of the Olarian D3 deformational event and immediately prior to the emplacement of regional S‐type granites. Two stages of fluid flow are identified in the area: first an albitizing event which involved the addition of Na and loss of Si, K and Fe; and a second phase of calcsilicate alteration with additions of Ca, Fe, Mg and Si and removal of Na. Fluid fluxes calculated for albitization and calcsilicate alteration were 5.56 × 109 to 1.02 × 1010 mol m?2 and 2.57 × 108–5.20 × 109 mol m?2 respectively. These fluxes are consistent with estimates for fluid flow through mid‐crustal shear zones in other terranes. The fluids associated with shearing and alteration are calculated to have δ18O and δD values ranging between +8 and +11‰, and ?33 and ?42‰, respectively, and ?Nd values between ?2.24 and ?8.11. Our results indicate that fluids were derived from metamorphic dehydration of the Willyama Supergroup metasediments. Fluid generation occurred during prograde metamorphism of deeper crustal rocks at or near peak pressure conditions. Shear zones acted as conduits for major crustal fluid flow to shallow levels where peak metamorphic conditions had been attained earlier leading to the apparent ‘retrograde’ fluid‐flow event. Thus, the peak metamorphism conditions at upper and lower crustal levels were achieved at differing times, prior to regional granite formation, during the same orogenic cycle leading to the formation of retrograde mineral assemblages during shearing.  相似文献   

16.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   

17.
The Waterman Metamorphic Complex of the central Mojave Desert was exposed as a consequence of early Miocene detachment-dominated extension. However, it has evidence consistent with a more extensive geological history that involves collision of a crustal fragment(s), tectonic thickening by overthrusting and two periods of extension. The metamorphic complex contains granitoid intrusives and felsic mylonitic gneisses as well as polymetamorphic rocks that include marble, calc-silicate, quartzite. mafic granulite, pyribolite, amphibolite, migmatite and biotite schist. The latter group of rocks was affected by an initial series of high-grade metamorphic events (M1 and M2) and a localized lower grade overprint (M3). The initial metamorphism (M1) can be separated into two stages along its high-grade P–T path: M1a, a granulite facies metamorphism at 800–850° C and 7.5–9 kbar and Mlb, an upper amphibolite facies overprint at 750–800° C and 10–12 kbar. M1a developed mineral assemblages and textures consistent with granulite facies conditions at a reduced activity of H2O and is associated with intense ductile deformation (D1) and minor local partial melting. M1b overprinted the granulite assemblages with a series of hydrous phases under conditions of increasing pressure and H2O activity and is accompanied by little or no deformation. M2 developed at lower pressures and temperatures (650–750° C, 4.5–5.5 kbar) and is distinguished by a second local overprint of hydrous phases that reflects an input of aqueous fluids probably associated with the intrusion of a series of granitic dykes and veins. Effects of M3 are confined to the Mitchel detachment zone, an anastomosing early Miocene detachment fault, and are characterized by local ductile/brittle deformation (D2) of the pre-existing high-grade rocks and granitoid intrusives and by the production of mylonites and mylonitic gneisses under greenschist facies conditions (300–350° C, 3–5 kbar). The initial overprint (M1a) represents metamorphism, devolatilization and minor partial melting of supracrustal rocks under granulite facies conditions as a consequence of tectonic and, possibly, magmatic thickening. The increasing pressure transition of M1a to M1b reflects a period of continued compressional tectonism, thrusting and influx of H2O, in part, locally related to crystallization of partial melts. The near isothermal decompression between M1b and M2 probably represents a pre-112-Ma extensional episode that may have been the result of a decompressional readjustment of a thickened crust. Following the initial extensional event, the metamorphic complex remained at depths of 10–17 km for at least 90 Ma until it was uplifted following Miocene extension. M3 develops locally in response to this second extensional period resulting from the early Miocene detachment faulting.  相似文献   

18.
胶东中生代金成矿系统   总被引:74,自引:50,他引:24  
胶东是我国最重要的金矿集区,其内已发现金矿床150余处,探明金资源储量4000余吨。虽然其金矿床数量众多、资源储量巨大、分布地域广泛、产出空间各异、矿化类型多样,但它们的成矿地球动力学背景、赋矿围岩环境与产出条件及其成矿作用特征总体一致:(1)胶东是一个主要由前寒武纪基底岩石和超高压变质岩块组成、中生代构造-岩浆作用发育的内生热液金矿集区,约130~110Ma的金成矿事件比区域变质作用晚约2000Myr;(2)区域金成矿系统形成于早白垩世的陆缘伸展构造背景,大规模金成矿事件发生在区域NW向伸展转换为NE向伸展后的NEE向挤压变形作用过程中,对应于中国东部岩石圈大规模减薄、华北克拉通破坏和大陆裂谷作用的高峰;(3)金矿床群聚于NNE向玲珑、鹊山和昆嵛山变质核杂岩周边,主要沿前寒武纪变质岩与中生代花岗岩体接触带形成的区域NE-NNE向拆离断层带分布;(4)控矿断裂带经历了早期的韧-脆性变形和晚期的脆性变形构造叠加,在三维空间上呈舒缓波状延展,控制了金矿体的侧伏和分段富集;(5)矿化样式以破碎带蚀变(砾)岩型、(硫化物-)石英脉型和复合脉带型为主,矿石普遍发育压碎、晶粒状和填隙结构,浸染状、细脉浸染状、网脉状、脉状、团块状和块状构造,反映其形成于韧-脆性→脆性变形环境;(6)矿石中金属矿物以黄铁矿、黄铜矿、方铅矿和闪锌矿为主,非金属矿物以石英、绢云母、钾长石、斜长石和方解石为主;金矿物以银金矿和自然金为主、含少量金银矿,主要以可见金的形式赋存于黄铁矿和石英裂隙中、含少量晶隙金和包体金;热液蚀变主要为黄铁矿化、硅化、钾长石化、绢云母化和碳酸盐化;成矿元素为Au-Ag(-Cu-Pb-Zn);呈现出中-低温蚀变矿化组合特征;(7)成矿流体为壳-幔混合来源,以壳源变质流体为主;成矿物质总体来源于中生代活化再造的前寒武纪变质基底岩石,并混入了少量浅部地壳和地幔组分。这种区域成矿特征的一致性,表明胶东金矿集区早白垩世大规模金成矿作用受控于统一的地质事件,属于后生的中-低温热液脉金成矿系统。这些金矿床具有明显的时空群聚分布特征,主要沿三个变质核杂岩周边的岩相接触带产出,且自西向东,金成矿作用年龄由老变新。据此,可划分为胶北隆起蚀变岩-石英脉型、苏鲁超高压变质带硫化物-石英脉型和胶莱盆地北缘蚀变砾岩型三个金成矿子系统。其矿化样式由浸染-细脉、细脉-网脉型和石英脉型→硫化物-石英脉型→蚀变(角)砾岩型变化,矿石结构、构造以细脉浸染状构造为主→环带结构与梳状构造→角砾状构造为特色,反映其成矿作用分别发生于脆-韧性转换带(约15km)→脆性张剪性断裂带→脆性角砾岩带(约5km)环境;矿化、蚀变规模和强度逐渐减弱,成矿物质中浅部壳源组分逐渐增多,可能与其矿床定位空间越来越远离源区有关;成矿温度和压力依次降低、成矿流体中大气降水和/或盆地卤水贡献逐渐增大,与其成矿深度越来越浅、成矿构造环境越来越偏张性的变化趋势一致。这种成矿特征的区域规律性变化反映至少在拆离断层韧-脆性转换带附近→脆性角砾岩带之间的地壳剖面中、在不同的垂向深度上连续成矿。胶东中生代金成矿系统的上述特征明显区别于典型的"与侵入岩有关的金矿"和"造山型金矿",也不同于全球其它已知的金矿床类型,不能被已有成矿模式所涵盖。为合理解释胶东中生代金成矿系统独特的地质与成矿特征,我们提出新的"胶东型金矿"成矿模式,指出古太平洋Izanagi俯冲板片的回转作用可能是引起区域前寒武纪变质基底岩石中成矿物质大规模活化再造的主要驱动机制,成矿流体主体来源于俯冲板片变质脱水,金可能主要以Au(HS)2-络合物的形式在流体中沿拆离断层系输运,在韧-脆性转换带附近→脆性角砾岩带,由于构造空间急剧增大、成矿流体的温度和压力突然降低,CO2、H2S逸出和硫化作用导致Au(HS)2-等金络合物失稳分解,金大规模沉淀富集成矿。  相似文献   

19.
20.
The dilemma of the Jiaodong gold deposits: Are they unique?   总被引:2,自引:0,他引:2  
The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as&gt;3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号