首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sulfur isotope composition of sulfides (mainly pyrite and arsenopyrite) from gold deposits/prospects of the Dharwar Craton such as Hutti, Hira-Buddini, Uti, Kolar (Chigargunta), Ajjanahalli, and Jonnagiri has a narrow range (δ34S = +1.1 to +7.1‰). Such craton-scale uniformity of the above gold camps is noteworthy, in spite of the wide diversity in host rock compositions and their metamorphic conditions, and suggests a magmatic or average crustal source of sulfur for all deposits studied. In addition, our study points towards gold precipitation from reduced ore fluids, with near-homogeneous sulfur isotope compositions.  相似文献   

2.
Evidence of mafic and ultramafic magmatism exists in many parts of the Dharwar craton which is divided into two blocks, the West Dharwar Craton (WDC) and the East Dharwar Craton (EDC). The mafic-ultramafic rocks occur in supracrustal/greenstone belts and in numerous enclaves and slivers in the WDC. The oldest recorded maficultramafic rocks, which are mainly komatiitic in nature, are preserved in the Sargur Group which is more than 3.3–3.4 Ga old, the youngest being manifested by 63–76 Ma old mafic dyke magmatism, possibly related to Deccan volcanism. In the Sargur Group, ultramafics rocks greatly dominate over mafic lithological units. Both extrusive and intrusive varieties, the latter in the form of differentiated layered complexes, occur. Mafic volcanics exists in all the greenstone belts of the eastern block and in the Bababudan and Western Ghats belts of the western block. In addition to the Sargur Group where stratigraphic sequences are unclear, mafic magmatism is recorded in three different formations of the Bababudan Group and two sub-divisions of the Shimoga and Chitradurga Groups where basaltic flows are conspicuous. In the well studied greenstone belts of Kolar and Hutti in the EDC, three to four different Formations of mafic volcanic rocks have been mapped. Isotopic dating has indicated that while mafic magmatism in the greenstone belts of the EDC covers only a short time span of between 2.65 to 2.75 Ga, those in the Dharwar Supergroup of the WDC cover a much longer time span from 3.35 to 2.5 Ga. Mafic dyke magmatism has taken place repeatedly from 2.45 Ga to about 1.0 Ga, but, the peak of emplacement was between 1.8 and 1.4 Ga when the densely developed swarms on the western and south western portions of the Cuddapah Basin and in the central part of Karnataka, were intruded. Emplacement of potassic ultramafic magma in the form of kimberlite-lamproite which is confined to the EDC, is a later magmatic event that took place between 1.4 Ga and 0.8 Ga. From a mineralization perspective, mafic magmatism of the supracrustal groups of the WDC and the greenstone belts of the EDC are the most important. V-Ti-magnetite bands constitute the most common deposit type recorded in the mafic-ultramafic complexes of the Sargur Group with commercially exploitable chromite deposits occurring in a number of belts. PGE mineralization of possible commercial value has so far been recorded in a single mafic-ultramafic complex, while copper-nickel mineralization occurs at certain localities in the Sargur and Chitradurga Groups. Gold mineralization hosted by mafic (occasionally ultramafic) rocks has been noted in many of the old workings located in supracrustal groups of rocks in the WDC and in the greenstone belts of EDC. Economically exploitable mineralization, however, occurs mainly in the greenstone belts of the Kolar, Ramagiri-Penkacherla and Hutti-Maski and along the eastern margin of the Chitradurga belt, where it is associated with a major N-S striking thrust zone separating the WDC from the EDC. Gold deposits of the eastern greenstone belts are comparable to those of the younger greenstone belts of Canada, Zimbabwe and Australia where the mineralization is associated with quartz carbonate veins often in iron-rich metabasic rocks. The gold was emplaced as hydrothermal fluids, derived from early komatiitic and tholeiitic magmas, and injected into suitable dilatent structures. The other common type of mineralization associated with the ultramafic rocks of the Sargur Group and supracrustal belts, particularly of the WDC, are asbestos and soapstone, related to autometamorphism/metasomatism. Ruby/sapphire deposits occur in places at the contacts of ultramafic rocks with the Peninsular Gneiss, and are related to contact metamorphism and metasomatism. Mineable magnesite deposits related to low-temperature hydrothermal/lateritic alteration exist in the zone of weathering, particularly in the more olivine-rich rocks. Recent spurt in diamond exploration is offering promise of discovering economically workable diamondiferous kimberlite/lamproite intrusions in the EDC.  相似文献   

3.
New zircon U–Pb ages for a felsic volcanic rock (2,588 ± 10 Ma) and an intrusive granite (≥2,555 ± 6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton, southern India, are similar to dates for equivalent rocks in the Eastern Dharwar Craton and indicates docking of the two cratons prior to this time. The zircons in the intrusive granite are strongly overprinted, and coexisting titanites yielded two different age populations: the dominant group gives an age of 2,566 ± 7 Ma, interpreted as the emplacement age, whereas the minor group gives an age of 2,516 ± 10 Ma, reflecting a hydrothermal overprint. In situ U–Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522 ± 6 Ma) and Ajjanahalli (2,520 ± 9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The new dates confirm that both the younger greenstone belts and lode gold mineralization in the Dharwar Craton are about 100–120 My, younger than in other well-dated Archaean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower-middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India.  相似文献   

4.
Gold deposits occur in greenstone belts world wide, and contribute to anomalously high gold production from Archaean terranes. As in other cratons, Archaean gold mineralization of Western Australia represents a complex array of deposit styles. Despite this, most deposits are clearly epigenetic, and large deposits have a number of features in common, including their strong structural controls, distinctive wallrock alteration (Fe-sulphide, K-mica±albite, Ca---Mg---Fe carbonates), consistent metal associations (Au---Ag---As---Sb---W---B; low base metals), commonly Fe-rich host rocks, great depth extension and lack of appreciable vertical zonation. These shared characteristics, combined with their ubiquitous occurrence, indicate that Archaean gold deposits had a common origin related to the tectonic evolution of greenstone belts.Auriferous hydrothermal systems were broadly synchronous with regional metamorphism and emplacement of synkinematic granitoids and felsic (porphyry) intrusions. Although these gold systems involved low-salinity, lowdensity, reduced, near-neutral H2O---CO2 fluids carrying gold as reduced sulphur complexes, the origin of the fluids is equivocal. Most timing evidence and stable isotope data cannot distinguish metamorphic from magmatic (granitoid or felsic porphyry) orggins, but the lack of consistent spatial relationships between specific, volumetrically significant intrusive phases and large gold deposits in a number of cratons strongly favours metamorphic derivation of fluids.The metamorphic-replacement model for gold mineralization involves devolatilization of the lower portions of the greenstone pile, with high geothermal gradients inhibiting significant melting. CO2 possibly formed by the decarbonation of early alteration, related to mantle degassing along crustal-scale, synbasinal fault zones. Auriferous fluids were channelled along greenstone-scale faults, in part developed during reactivation of crustal-scale faults in a strike-slip regime. Gold deposition occurred largely under greenschist facies conditions (about 300–400°C, 1–2 kb) in response to decreasing gold solubility with declining temperature. However, a major control on gold deposition was fluid/wallrock interaction. Many large deposits formed by sulphidation of Fe-rich host rocks, with synchronous deposition of Fe-sulphides and gold. However, the variable nature of gold-depositing reactions, including lowering of fO2 and pH, allowed a multitude of small, and some large, deposits to form wherever that fluid circulation occurred. In consequence, several of the relatively small deposits currently worked from open pit are hosted by ultramafic and felsic rocks. There are few constraints on the source of components (Au, S, K, CO2) added to gold deposits, but even giant deposits such as the Golden Mile, Kalgoorlie could have formed from a realistic greenstone source volume (ca. 8×8×5 km). Convective circulation of fluids could have contributed to the generation of high fluid-rock ratios.On the regional scale, the markedly heterogeneous distribution of large gold deposits, gold productivity and host rocks to deposits can be accommodated by the metamorphic-replacement model. The most favourable conditions for development of auriferous hydrothermal systems operated in younger (ca. 2.7±0.1 Ga) rift-phase greenstones where greatest extension and crustal thinning produced high geothermal gradients, crustal-scale synbasinal faults, and rapid extrusion and burial of volcanics, including abundant komatiites. Iron-rich tholeiitic basalts and dolerites were preferred host rocks for large gold deposits. The least favourable conditions existed in older (ca. 3.5-3.4 Ga) platformphase greenstones, where gentle sagging on submerged continental crust produced eruption of mainly mafic volcanics with few komatiites, commonly in very shallow-water environments. This allowed intense synvolcanic alteration of both gold source rocks and potential host rocks. The generally smaller gold deposits formed mainly in ultramafic or greywacke hosts. Younger (ca. 3.0 Ga) platform-phase greenstones appear intermediate in nature but, unlike other greenstones, have significant epigenetic gold deposits in originally oxide-facies BIF, which were deposited on relatively deep-water platforms. Similar controls appear to exist on a world scale, with gold mineralization peaking at ca. 2.7±0.1 Ga in response to development of major rift zones in thickened, relatively mature continental crust. Interestingly, the giant Witwatersrand goldfield formed at about the same time.  相似文献   

5.
After a century of virtual neglect, exploration in the Yandal greenstone belt of the Yilgarn Craton of Western Australia has yielded resources of 12 Moz Au during the 1990s. Success has come from a combination of conceptual geological models, surface prospecting, understanding the weathering environment, and systematic drilling. The Archaean Yandal greenstone belt comprises a lowermost banded iron formation, extensive basalt and dolerite sills, ultramafic rocks, intermediate to felsic volcanic rocks, and variable clastic sedimentary rocks. Early shear zones trend NNW and form the greenstone belt margins, or trend N–S within the belt. Later brittle cross-faults are critical in gold localization. Gold resources and past production at major deposits include Bronzewing (4 Moz Au), Jundee (5 Moz) Mt.␣McClure (1 Moz) and Darlot (3␣Moz, some of which was produced before 1990). All major deposits are hosted by Fe-rich mafic rocks, and mineralization displays a combination of different orientations and morphologies. Quartz veins are surrounded by broad carbonate alteration with proximal K-mica and Fe-sulphides. The recognition of a critical role for the late brittle structures in localizing gold implicates mid-crustal processes within the greenstone belt for fluid generation, and with the host rock control, supports the model in which fluid was derived by metamorphic devolatilization. Received: 19 September 1997 / Accepted: 7 January 1998  相似文献   

6.
Southern Cross was one of the earliest gold mining centres in Western Australia. Over 142 tonnes of gold have been produced from the district, and, on a gold per hectare basis, the Southern Cross greenstone belt in the southwestern Yilgarn Craton is the most productive of Western Australia's Archaean greenstone belts. The SW Yilgarn Craton is characterised by high-grade (amphibolite- to granulite-facies) metamorphism, extensive granitoid magmatism and older greenstone volcanism ages, compared to the well-known greenschist-facies metamorphism and younger (2.7 Ga) eruption ages which dominate in the Eastern Goldfields Province. The Pb-isotope compositions of deep-seated granitoids in the SW Archaean Yilgarn Craton, which were emplaced coeval with a craton-wide major orogenic lode-gold mineralization event at about 2.64–2.63 Ga, have been determined for 96 whole-rock and 24 K-feldspar samples. The Pb isotope data of the granitoids are consistent with a crustal origin for their genesis, probably by reworking (partial melting) of older continental crust. The Pb isotope composition of greenstones, which are the main host rocks for gold mineralisation, and pyrites from the komatiite-hosted syngenetic Ni deposits in the amphibolite-facies Forrestania greenstone belt, have also been determined, with initial Pb-isotope ratios higher than that for the Eastern Goldfields Province. The Pb isotopic character of the orogenic lode-gold deposits in the region is intermediate between coeval granitoid and greenstone Pb, indicating that the ore fluids contained metals from both reservoirs. The Pb in the ore fluid of the most deeply formed deposit, Griffin's Find, overlaps the isotopic composition of coeval granitoids, indicating the deep-seated granitoid magmatism was the primary source for Pb in the ore fluids. Received: 8 October 1998 / Accepted 22 December 1998  相似文献   

7.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   

8.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

9.
小宛南山金矿是产于太古宙花岗岩-绿岩地体,受敦煌群D岩组上部层位和韧性剪切带控制的变质热液型金矿床.矿源岩为绿岩带的镁铁质火山岩,成矿流体主要为变质热液,主成矿期属中元古宙.基于金矿床区域地质背景、矿床地质特征、微量元素特征、硫铅同位素组成和包裹体特征,以金赋存层位、容矿岩石、韧性剪切构造、蚀变作用为基础,通过分析成矿地质条件,证明金矿床应属变质热液成因.  相似文献   

10.
Many Archaean mesothermal gold deposits are spatially associated with felsic to lamprophyric minor intrusions and it has been suggested that magmatic processes related to such intrusions may be important in the genesis of these deposits. A comparison of the Pb-isotopic signature of gold-related galenas from Kambalda and Norseman with that of spatially associated minor intrusions (at the time of mineralization) indicates that the ore-fluid Pb cannot have been derived solely from the intrusions or their source regions. For both study areas, the galena Pb-isotopic compositions are bracketed by those of local volcanic (mafic) and intrusive (largely felsic) rock types. This is consistent with the ore fluid having derived metallic components from the crust (or crustally derived granitic rocks) and the mantle (or mantle-derived rocks of the greenstone succession) via metamorphic dewatering or mantle/crustal degassing. Interaction of granite-derived magmatic fluids with greenstone lithologies could plausibly produce a similar array of Pb-isotopic signatures. The Norseman data, as a whole, are more radiogenic than the Kambalda data for broadly synchronous mineralization, reflecting the greater abundance of older granitic rocks with respect to mafic/ultramafic rocks in the Norseman district. The provinciality exhibited by the Pb-isotopic composition of the ore fluid indicates that the gold-mineralizing process formed galena whose Pb-isotopic composition was very sensitive to local variations in crustal Pb-isotopic composition, either within the source region of the fluid or along fluid conduits.  相似文献   

11.
The eastern Dharwar Craton of southern India includes at least three ∼ 2700Ma supracrustal belts (schist belts) which have mesothermal, quartz-carbonate vein gold mineralization emplaced within the sheared metabasalts. In the Hutti and the Kolar schist belts, the host rocks are amphibolites and the ore veins have been flanked by only a thin zone of biotitic alteration; in the Ramagiri belt, however, the host rocks to the veins have been affected by more extensive but lower temperature alteration by fluids. The rare earth element (REE) geochemistry of the host metabasalts, alteration zones, ore veins and the bulk sulfides separated from the ore veins and the alteration zones suggest that
–  •the REE chemistry of the immediate host rocks has been modified by fluids which added LREE,
–  •the REE abundance of the ore veins vary with the amount of host rock fragments included in the veins,
–  •the sulfides formed during mineralization have significant REE concentration with patterns nearly identical to the ore veins and alteration zones and
–  •therefore the ore fluids involved in gold mineralization here could be LREE enriched.
Because alteration and mineralization involved addition of REE, more LREE compared to HREE, the fluids could be of higher temperature origin. The initial Nd isotope ratios in the host rocks (εNd calculated at 2700 Ma) showed a large variation (+8 to -4) and a deep crustal source for the fluid REE seems likely. A crustal source for Pb and Os in the ore samples of Kolar belt has previously been suggested (Krogstadet al 1995; Walkeret al 1989). Such a source for ore fluids is consistent with a late Archean (2500Ma) accretionary origin for the terrains of the eastern Dharwar Craton.  相似文献   

12.
The New Consort Gold Mine in the Palaeo- to Mesoarchaean Barberton greenstone belt, South Africa is one of the oldest recognized orogenic gold deposits on Earth. The gold mineralization is hosted by discrete mylonitic units that occur at, or close to, the contact between the mafic and ultramafic volcanic rocks of the c. 3,280 Ma Onverwacht Group and the mainly metasedimentary rocks of the overlying c. 3,260–3,230 Ma Fig Tree Group. This contact, locally referred to as the Consort Bar, formed during ductile D1 imbrication of the metavolcanosedimentary sequence and predates the main stage of the gold mineralization. The imbricate stack is situated in the immediate hanging wall of the basal granitoid–greenstone contact along the northern margin of the greenstone belt. It is characterized by a condensed metamorphic profile in which the metamorphic grade increases from upper greenschist facies conditions (510–530°C, 4 kbar) in rocks of the Fig Tree Group to upper amphibolite facies grades (600–700°C, 6–8 kbar) in the basal Onverwacht Group. Detailed structural and petrological investigations indicate that the Consort Bar represents a major structural break, which is largely responsible for the telescoping of metamorphic isograds within the structural sequence. Two stages of mineralization can be distinguished. Loellingite, pyrrhotite, and a calc–silicate alteration assemblage characterize an early high-T mineralization event, which is restricted to upper amphibolite facies rocks of the Onverwacht Group. This early mineralization may correlate with the local D1 deformation. The second and main stage of gold mineralization was associated with renewed ductile shearing during D2. The D2 deformation resulted in the reactivation of earlier structures, and the formation of a NNW trending, steeply dipping shear zone system, the Shires Shear Zone, which separates two regional SE plunging D1 synclines. The mineralized shear zones are intruded by abundant syn-kinematic pegmatite dykes that have previously been dated at c. 3040 Ma. Petrological and geothermobarometric data on ore and alteration assemblages indicate that the main stage of gold mineralization, which affected a crustal profile of ca. 1.5 km, was characterized by increasing temperatures (c. 520 to 600°C) with increasing structural depth. Sulfide assemblages in the ore bodies change progressively with metamorphic grade, ranging from arsenopyrite + pyrite + pyrrhotite in the structurally highest to arsenopyrite + pyrrhotite + chalcopyrite + loellingite in the structurally deepest part of the mine. The main stage of gold mineralization was broadly syn-peak metamorphic with respect to the Fig Tree Group, but postdates the peak of metamorphism in upper amphibolite facies rocks of the structurally underlying Onverwacht Group. This indicates that the mineralization coincided with the juxtaposition of the two units. As the footwall rocks were already on their retrograde path, metamorphic devolatilisation reactions within the greenstone sequence can be ruled out as the source of the mineralizing fluids.  相似文献   

13.
The Xiaoqinling district, the second largest gold producing district in China, is located on the southern margin of the North China Craton. It consists of three ore belts, namely, the northern ore belt, the middle ore belt and the southern ore belt. Pyrite from the Dahu gold deposit in the northern ore belt and Wenyu and Yinxin gold deposits in the southern ore belt were investigated using a combination of ore microscopy and in-situ laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS). A range of trace elements was analyzed, including Au, Te, Ag, Pb, Bi, Cu, Co, Ni, Zn, Mo, Hg, As and Si. The results show that there are no systematic differences between the trace element compositions of pyrite in the three deposits from different ore belts. In general, Au concentrations in pyrite are low (from < 0.01 ppm to 2.2 ppm) but Ni concentrations are rather high (up to 8425 ppm). A four-stage mineralization process is indicated by microscopic and field observations and this can be related to the systematic trace element differences between distinct generations of pyrite. Stage I precedes the main gold mineralization stage; pyrite of this stage has the lowest Au concentrations. Stages II and III contributed most of the gold to the ore-forming system. The corresponding pyrite yielded the highest concentrations of Au and Ni. Our microscopic observations suggest that pyrite in the main gold mineralization stage precipitated simultaneously with molybdenite that has been previously dated as Indosinian (~ 218 Ma by Re–Os molybdenite dating), indicating the Indosinian as the main gold mineralization stage. The Indosinian mineralization age and the geological and geochemical features of these gold deposits (e.g., low salinity, CO2-rich ore fluids; spatial association with large-scale compressional structures of the Qinling orogen; δ18O and δD data suggestive of mixing between metamorphic and meteoric waters; δ34S and Pb-isotopic data that point to a mixed crustal-mantle source) all point to typical orogenic-type gold deposits. High Ni concentrations (up to 8425 ppm) of pyrite possibly linked to deep-seated mafic/ultramafic metamorphic rocks provide further evidence on the orogenic gold deposit affinity, but against the model of a granitic derivation of the mineralizing fluid as previously suggested by some workers. Generally low Au concentration in pyrite is also consistent with those from worldwide orogenic gold deposits. Therefore, the gold mineralization in the Xiaoqinling district is described as orogenic type, and is probably related to Indosinian collision between the North China Craton and the Yangtze Craton.  相似文献   

14.
The Mangalur greenstone belt of Dharwar Craton, South India, is an Archaean schist belt dominated by metavolcanic rocks. The gold mineralization occurs within the metavolcanics and the fabric, mineralogy and geochemistry of these host rocks indicate that they were tholeiitic basalts regionally metamorphosed under medium to low-grade greenschist facies. The basic metavolcanic rocks occur as tholeiitic metabasalts and amphibolites. The rocks have undergone some fractionation and appear to be derived from melts generated by 10 to 25% melting of the mantle at depths 30 to 35 km around temperature 1200°C and pressure 12 kb. The source of gold is mainly in the basalts and not in the surrounding granites.  相似文献   

15.
Gold mineralization of the Hutti mine, southern India, is situated in closely spaced laminated quartz veins and associated alteration haloes along steeply dipping shear zones within a sequence of rather uniform amphibolites. Intense shearing has resulted in large-scale mylonitization of the wall rocks. Anastomosing shear zones, with intervening lensoid bodies of unsheared amphibolites, are characteristic features of the deposit. The general pattern of symmetrical alteration comprises a distal zone of chlorite-rich rock, with a proximal biotite-rich zone adjacent to laminated quartz veins. Arsenopyrite thermometry yielded a temperature range of 350-477 °C for the biotite alteration zone, which preceded the formation of the laminated quartz veins. Mass balance calculations on the alteration zones indicate a gradual mass and volume loss during alteration. The alteration is accompanied by intense potash metasomatism and addition of sulfur, which resulted in the formation of arsenopyrite, pyrrhotite, and pyrite. Results of fluid inclusion studies suggest that low salinity (3.9-13.5 wt% NaCl equivalent) H2O-CO2 rich fluids were responsible for gold-rich laminated quartz vein formation in the Hutti deposit. These fluids constituted a later counterpart of the protracted fluid activity that first formed the biotite alteration zone. The estimated P-T values range from 1.0 to 1.7 kbar at 280-320 °C. These data, along with the alteration assemblages and the characteristic gold-sulfide association, both in the altered wall rock and laminated quartz veins, suggest that gold, transported as reduced bisulfide complexes, was deposited in response to sulfidation reactions in the wall rocks. Comparison of P-T conditions of formation of gold-quartz veins at Hutti with two other large gold deposits in the eastern Dharwar Craton, namely Kolar (1.8 kbar/280 °C) and western Ramagiri (1.45-1.7 kbar/240-270 °C), indicates broadly similar lode-gold forming conditions in the Dharwar Craton.  相似文献   

16.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

17.
The Rb-Sr age of metasomatic rocks from four gold deposits and occurrences localized in Archean granite-greenstone belts of the western, central, and southern Karelian Craton of the Baltic Shield has been determined. At the Pedrolampi deposit in central Karelia, the dated Au-bearing beresite and quartz-carbonate veins are located in the shear zone and replace Mesoarchean (~2.9 Ga) mafic and felsic metavolcanic rocks of the Koikar-Kobozero greenstone belt. At the Taloveis ore occurrence in the Kostomuksha greenstone belt of western Karelia, the dated beresite replaces Neoarchean (~2.7 Ga) granitoids and is conjugated with quartz veins in the shear zone. At the Faddeinkelja occurrence of southern Karelia, Aubearing beresite in the large tectonic zone, which transects Archean granite and Paleoproterozoic mafic dikes, has been studied. At the Hatunoja occurrence in the Jalonvaara greenstone belt of southwestern Karelia, the studied quartz veins and related gold mineralization are localized in Archean granitoids. The Rb-Sr isochrons based on whole-rock samples and minerals from ore-bearing and metasomatic wall rocks and veins yielded ~1.7 Ga for all studied objects. This age is interpreted as the time of development of ore-bearing tectonic zones and ore-forming hydrothermal metasomatic alteration. New isotopic data in combination with the results obtained by our precursors allow us to recognize the Paleoproterozoic stage of gold mineralization in the Karelian Craton. This stage was unrelated to the Archean crust formation in the Karelian Block and is a repercussion of the Paleoproterozoic (2.0–1.7 Ga) crust-forming tectonic cycle, which gave rise to the formation of the Svecofennian and Lapland-Kola foldbelts in the framework of the Karelain Craton. The oreforming capability of Paleoproterozoic tectonics in the Archean complexes of the Karelian Craton was probably not great, and its main role consisted in reworking of the Archean gold mineralization of various genetic types, including the inferred orogenic mesothermal gold concentrations.  相似文献   

18.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

19.
鲁西地区新太古代雁翎关组由科马提岩、角闪质岩石、变粒岩和含铁石英岩等组成 ,其原岩为一套超镁铁质镁铁质火山熔岩及火山碎屑沉积的表壳岩建造 ,经历了三期区域变质作用 ,变质程度达低角闪岩相 ,是华北地台上一个典型的绿岩带。鲁西花岗岩绿岩带中分布有大小黄铁矿脉数十条之多 ,呈层状、透镜状或脉状沿片麻理方向展布 ,硫品位 3 .79%~ 3 1.6% ,伴生有用组分Fe、Ni、Ag等。通过对绿岩、矿体和矿石特征、S、Fe分布及变质成矿作用等方面的研究 ,证实绿岩中含有丰富的S、Fe、Ni等造矿元素 ,认为绿岩既是赋矿岩石亦是矿源层 ,矿床属变质热液叠加的变质火山沉积型硫铁矿床。  相似文献   

20.
The Hutti gold mine is located in a high-angle, NNW–SSE-trending shear zone system, which hosts nine discrete auriferous shear zones (reefs). On a clockwise, retrograde PT path two separate stages of deformation/metamorphism (D2/M2 and D3/M3) occurred synchronous with two distinct stages of gold mineralization, both of which were associated with different fluid types. Stage 1 mineralization developed during D2/M2, where the amphibolite host rocks were altered by a metamorphic fluid with a $ {{\delta }^{{18}}}{{O}_{{{{H}_2}O}}} $ of 7.5–10.1?‰, rich in K, S, As, and Au at pressure and temperature conditions of around 3 kbar and 530?+?20/?30°C, respectively. The stage 1 auriferous shear zones are enveloped by a zoned alteration consisting of a distal biotite–chlorite and proximal biotite–plagioclase assemblage. Subsequently, D2/M2 was overprinted by D3/M3 deformation and metamorphism at 300–400°C and <2 kbar that formed the stage 2 mineralization. The stage 2 mineralizing fluid which originated from outside the greenstone belt (δ18Ofluid of 3.2–6.8?‰) was rich in Si, Au, and W. This mineralization stage is distinct by the emplacement of laminated quartz veins central to the shear zone, containing locally visible gold at concentrations of up to 1 kg Au/t. The laminated quartz veins are surrounded by a millimeter-scale chlorite2–K-feldspar alteration halo, which replaced the stage 1 biotite–plagioclase assemblage. The oxygen isotopic composition of the stage 2 fluid suggests a mixture of a magmatic fluid with an oxygen isotopic composition in the range of 6 to 10?‰ and an isotopically light formation fluid that resulted from fluid–rock interaction in the greenstone pile. The two fluid fluxes at stages 1 and 2 both contributed to the overall gold mineralization; however, it was the second fluid pulse, which gave the Hutti mine its status as the largest gold mine in India. The metamorphic evolution was thereby important for the first stage, whereas the second stage was controlled by tectonism and intrusion of the high-heat production Yellagatti granite that re-established the fluid plumbing and mineralizing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号