首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   3篇
地质学   15篇
海洋学   2篇
自然地理   1篇
  2022年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2013年   4篇
  2012年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Coastal protective structures, such as composite breakwaters, are generally vulnerable to earthquake. It was observed that breakwaters damage mainly due to failure of their foundations. However, the seismically induced failure process of breakwater foundation has not been well understood. This study describes failure mechanism of breakwater foundation as well as a newly developed reinforcing model for breakwater foundation that can render resiliency to breakwater against earthquake-related disasters. Steel sheet piles and gabions were used as reinforcing materials for foundation. The experimental program consisted of a series of shaking table tests for conventional and reinforced foundation of breakwater. Numerical analyses were conducted using finite difference method, and it was observed that the numerical models were capable to elucidate the seismic behavior of soil–reinforcement–breakwater system. This paper presents an overview of the results of experimental and numerical studies of the seismic response of breakwater foundation. Overall, the results of these studies show the effectiveness of the reinforced foundation in mitigating the earthquake-induced damage to the breakwater. Moreover, numerical simulation was used for parametric study to determine the effect of different embedment depths of sheet piles on the performance of breakwater foundation subjected to seismic loading.  相似文献   
2.
3.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   
4.
Borah  Parashmoni  Hazarika  Suhasini  Prakash  Amit 《Natural Hazards》2022,111(1):585-617
Natural Hazards - Rainfall is the key climatic variable, on which water availability, food security and livelihood depend, especially in an agrarian society like the northeast region of India. It...  相似文献   
5.
6.
Subansiri?CRanganadi Doab (confluence country), located in Lakhimpur district, Assam, is one of the worst flood-affected areas in Brahmaputra valley. The Doab is well populated, and land around these rivers is extensively used for cultivation. As means of flood protection, embankments were constructed in the 1950s along the banks of both the rivers. On the other hand, these rivers are dynamic in terms of banklines and other forms of channel changes. Progressive migration of bankline, due to erosion, results in loss of cultivable land. Moreover, it causes breaches in the embankments increasing the severity of flood in the Doab. This paper attempts to study the changes in the banklines of two major rivers in the floodplains of the Subansiri?CRanganadi Doab during 1997?C2009 in the context of the riverine hazards it brings to the floodplain dwellers. The shift of the banklines in Subansiri?CRanganadi Doab, downstream of North Lakhimpur, has been estimated using IRS LISS imageries of 1997 and 2009 in GIS environment. The river Subansiri during the study period has migrated westward and has widened substantially resulting in erosion of an area of ~19.137?km2. For Ranganadi, the total area that has been eroded due to channel changes is ~0.897?km2. The channel changes are mainly due to concave bank erosion associated with high stages of flow. Channel widening in Subansiri and Ranganadi in the study area during the decades of 1990s and 2000 has led to frequent breaches in the embankments. Lateral erosion and inundation due to embankment failure are the most dominant facets of riverine hazards in the study area as these lead to loss of livelihood. Therefore, it is necessary to incorporate geomorphic changes in formulating flood management programmes.  相似文献   
7.
8.
In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4?years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity??one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10?Hz), we select 9 moderate size earthquakes (5.3????Ml????4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95?×?1021 dyne-cm to 6.31?×?1023 dyne-cm and corner frequencies in the range of 1.8?C6.25?Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389?bar and 0.225 to 0.781?km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0) and local magnitude (Ml) results in a relation LogM 0?=?(1.56?±?0.05)Ml?+?(8.55?±?0.12) while that between moment magnitude (M w ) and local magnitude as M w ?=?(0.92?±?0.04)Ml?+?(0.14?±?0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya.  相似文献   
9.
Many breakwaters have collapsed in the past due to earthquakes and subsequent tsunamis, resulting in considerable devastation as the breakwaters failed to prevent the tsunami from entering the coastal plain areas. Breakwater failures are mainly caused by damage to its foundation ground. However, the damage mechanism of breakwater foundation during earthquakes and tsunamis remains unclear. This study focuses on the breakwater failure mechanism due to collapse of its foundation under the action of an earthquake and subsequent tsunami. In addition, reinforcing countermeasures for breakwater foundation to mitigate damage due to compound geodisasters triggered by earthquakes and tsunamis are proposed. Sheet piles and gabions were used in the breakwater foundation as reinforcing countermeasures. To evaluate the effectiveness of the reinforced foundation, a series of shaking table tests and hydraulic model tests were performed. The tsunami overflow tests were conducted on the same model after the earthquake loadings, and comparisons were made between the conventional and reinforced foundations. It was observed during the tests that the reinforced foundation could effectively reduce the damage to the breakwater caused by earthquake and tsunami-induced forces. Numerical analyses were performed to clarify the mechanism of the soil–breakwater–reinforcement–fluid system. Overall, this study is useful in practical engineering, and the reinforcing foundation model could be adopted for offshore structures to reduce damage from earthquakes and tsunamis in the future.  相似文献   
10.
Magnetotelluric studies over the Shillong plateau and lower Brahmaputra sediments have delineated the Dauki fault as a NE–SW striking thrust zone with a dip angle of about 30°, along which the low resistivity layer of Bengal sediments and the underlying oceanic crust subduct to the northwest. At present, about 50 km length of these sequences has subducted beneath the Shillong plateau and is traced up to depth of about 40 km. Another thrust zone, sub parallel to the Dauki thrust is observed in the lower Brahmaputra valley, corresponding to the Brahmaputra fault. This is interpreted to be an intracratonic thrust within the Indian plate. These results suggest that a large fraction of the seismicity over the Shillong plateau is associated with the NE–SW striking Dauki thrust, contrary to the earlier belief that this fault zone is relatively aseismic. The present studies also suggest that the Shillong plateau and the adjoining sedimentary layers act as a supracrustal block, not directly participating in the subduction process. However in response to the compressive tectonic forces generated by the Himalayan and Indo-Burman subduction processes the Shillong plateau, together with the Brahmaputra sediments overlying the Indian crust drift eastwards relative to the Bengal sediments along the surface expression of the Dauki fault leading to a dextral strike slip movement. We thus propose that the NE Indian crust responds to the compressive forces differently at different depths, governed by the rheological considerations. At deeper levels the crustal readjustments take place through the subduction along the Dauki and Brahmaputra thrusts where as, at the shallow levels the relative deformability of the supracrustal blocks have a strong influence on the tectonics, leading to the strike slip mechanism along the surface expression of the Dauki fault.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号