首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Valrie Chavagnac 《Lithos》2004,75(3-4):253-281
The Komati Formation of the Barberton greenstone belt (BGB), South Africa, is composed of both Al-undepleted and -depleted komatiites. The Al-undepleted komatiites are characterised by Al2O3/TiO2 and CaO/Al2O3 ratios of 15–18 and 1.1–1.5, respectively, and exhibit chondritic trace element contents and (Gd/Yb)N ratios. In contrast, the Al-depleted komatiites show significantly lower Al2O3/TiO2 ratios of 8–12, highly variable CaO/Al2O3 (0.19–2.81) ratios combined with (Gd/Yb)N ratios varying from 1.08 to 1.56. A Sm–Nd whole rock isochron for komatiites of the Komati Formation gives an age of 3657±170 Ma. 147Sm/144Nd ratios (0.1704 and 0.1964) are all lower than the chondritic value of 0.1967. The komatiite i,Nd(3.45) values cluster at +1.9±0.7.

Trace element distribution indicates that most of the primary geochemical and isotopic features of the komatiites were preserved in line with the conservation of the primary chemical composition of clinopyroxene. High field strength element and rare earth element abundances indicate that crustal contamination and post-crystallisation processes did not disturb the primary features of komatiites.

The Sm/Nd and Nb/U ratios of komatiites indicate that the Barberton greenstone belt mantle source has undergone melt extraction prior to komatiite formation. Variations of Al2O3/TiO2, (Gd/Yb)N, Zr/Sm and Sm/Nd ratios of komatiites indicate that a batch melting of slightly depleted mantle source during with garnet and/or clinopyroxene remained in the residue can produce the geochemical isotopic feature of the Barberton greenstone belt komatiites. Typical geochemical fingerprints of subduction-related processes (LILE enrichment, HFSE depletion compared to REE), as known from modern subduction zones, are not observed. Komatiites exhibit Ti/Zr, La/Nb, Nb/U, Sr/Nd and Ba/La ratios comparable to those of oceanic island basalt and mid-ocean ridge basalt. (La/Nb)PMN, (Sm/Yb)PMN, positive δNb values and flat or slightly enriched REE patterns suggest that BGB komatiites are part of an oceanic plateau rather than an oceanic island such as Iceland. Therefore, an oceanic plateau or mid-ocean ridge, in connection with an oceanic plateau, such as Ontong Java plateau or Caribbean–Colombian oceanic plateau, is a suitable tectonic setting for the formation of the BGB komatiites.  相似文献   


2.
Ryuichi Shinjo  Yuzo Kato   《Lithos》2000,54(3-4):117-137
The magmatism at the axial zone of the middle Okinawa Trough, a young continental back-arc basin, comprises a bimodal basaltic–rhyolitic suite, accompanied by minor intermediate rocks. We report major and trace element and Sr–Nd isotopic data for the intermediate to silicic suites, to provide constraints on their petrogenesis. The rhyolites, recovered as lava and pumice, fall into three geochemical groups (type 1, 2, and 3 rhyolites). Type 1 rhyolites have 87Sr/86Sr (0.7040–0.7042) and 143Nd/144Nd (0.5128–0.5129) identical to those of associated basalts, and are characterized by highly fractionated REE patterns. Petrogenesis of type 1 rhyolites is explicable in terms of fractional crystallization of the associated basalt. In contrast, type 2 rhyolites and andesite have slightly higher 87Sr/86Sr (0.7044–0.7047) but similar 143Nd/144Nd (0.5128) compared to those of the basalts. The compositions of type 2 rhyolite and andesite can be explained by assimilation and fractional crystallization (AFC) processes of the basalt magma; quantitative analysis suggests assimilation/fractional crystallization (Ma/Mc) ratios of ≤0.05. Hybrid andesite generated by mixing of evolved basalt and type 1 rhyolite is also present. We emphasize that mechanical extension in this part of the Okinawa Trough involves gabbroic lower crust that resulted from fractionation of mantle-derived basaltic magmas. Type 3 rhyolite occurs only as pumice, which makes its derivation questionable. This rhyolite has major and trace element compositions and Sr–Nd isotopic ratios, which suggests that it may be derived from volcanic activity on the southern Ryukyu volcanic front, and arrived in the Okinawa Trough by drifting on the Kuroshio Current.  相似文献   

3.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

4.
Tertiary basaltic magmatism in Serbia occurred through three episodes: (i) Paleocene/Eocene, when mostly east Serbian mafic alkaline rocks (ESPEMAR) formed, (ii) Oligocene/Miocene, dominated by high-K calc–alkaline basalts, shoshonites (HKCA–SHO) and ultrapotassic (UP) rocks, and (iii) Pliocene episode when rocks similar to (ii) originated. In this study, the geodynamics inferred from petrogenesis of the (i) and (ii) episodes are discussed.

The ESPEMAR (62–39 Ma) occur mainly as mantle xenolith-bearing basanites. Their geochemical features, such as the REE patterns, elevated HFSE contents and depleted Sr–Nd isotope signatures, indicate a relatively small degree of melting of an isotopically depleted mantle source. Their mantle-normalized trace element patterns are flat to concave and “bell-shaped”, characteristic of an OIB source free of subduction component. 87Sr/86Sri and 143Nd/144Ndi isotope ratios (0.7030–0.7047 and 0.5127–0.5129, respectively) indicate a depleted source for the ESPEMAR similar to the European Asthenospheric Reservoir (EAR).

The HKCA–SHO rocks (30–21 Ma) occur as basalts, basaltic andesites and trachyandesites. They show enrichment in LILE and depletion in HFSE with all the distinctive features of calc–alkaline arc-type magmatism. This is coupled with somewhat enriched Sr–Nd isotope signature (87Sr/86Sri=0.7047–0.7064, 143Nd/144Ndi=0.5124–0.5126). All these features are characteristic of subduction-related metasomatism and fluxing of the HKCA–SHO mantle source with fluids/melts released from subducted sedimentary material.

UP rocks (35–21 Ma) appear as (i) Si-rich lamproites and related rocks and (ii) olivine leucitites and related rocks. UP rocks have high-LILE/HFSE ratios with enrichment for some LILE around 1000× primitive mantle, troughs at Nb and Ti, and peaks of Pb in their mantle-normalized patterns. They also show highly fractionated REE patterns (La/Yb up to 27, LaN up to 400). The isotopic ratios approach crustal values (87Sr/86Sri=0.7059–0.7115 and 143Nd/144Ndi=0.5122–0.5126), and that signature is typical for ultrapotassic rocks worldwide.

The Paleocene/Eocene episode and formation of the ESPEMAR is referred to as asthenospheric-derived magmatism. This magmatism originated through passive riftlike structures related to possible short relaxational phases during predominantly collisional and compressional conditions. The Oligocene/Miocene episode and formation of HKCA–SHO and UP rocks were dominated by lithospheric-controlled magmatism. Its origin is connected with the activity of a wide dextral wrench corridor generated along the axis of the Dinaride orogen which collapsed in response to thickened crust caused by earlier compressional processes.

To explain conditions of these two magmatic events, a three-stage geodynamic model has been proposed: (1) subduction–termination/collision stage (Paleocene/Eocene), (2) collision stage (Eocene) and (3) postcollision/collapse stage (Oligocene/early Miocene).  相似文献   


5.
Lamprophyres consisting mainly of diopside, phlogopite and K-feldspar formed in the early Tertiary around 60 Ma in the Beiya area and are characterized by low SiO2 ± 46–50 wt.%), Rb (31–45 ppm) and Sr (225–262 ppm), high Al2O3, (11.2–13.1 wt.%), CaO (8.0–8.7 wt.%), MgO (11.5–12.1 wt.%), K2O(4.9–5.5 wt.%), TiO2 (2.9–3.3 wt.%) and REE (174–177 ppm), and compatible elements (e.g. Sc, Cr and Ni) and HSF elements (e.g. Th, U, Zr, Nb, Ta, Ti and Y), and low 143Nd/144Nd 0.512372–0.512536, middle 87Sr/86Sr 0.707322–0.707395, middle 206Pb/204Pb 18.50–18.59, 207Pb/204Pb 15.60–15.65 and 208Pb/204Pb 38.75–38.8. These rocks developed peculiar quartz megacrysts with poly-layer reaction zones, melt inclusions, and partial melted K-feldspar and plagioclase inclusions, and plastic shapes. Important features of these rocks include: (1) hybrid composition of elements, (2) abrupt increase of SiO2 content of the melt, recorded by zoned diopside, (3) development of sanidine and aegirine-augite reaction zones, (4) alkaline melt and partial melted K-feldspar and plagioclase inclusions, (5) deformed quartz inclusions associated with quartz megacrysts, (6) the presence of quartz megacrysts in plastic shape with their parent melts, (7) the occurrence of olivine, high-MgO ilmenite and spinel inclusions within earlier formed diopside, phlogopite and magnetite. Median 87Sr/86Sr values between Tertiary alkaline porphyries in the Beiya area and the western Yunnan and Tertiary basalt in the western Yunnan indicate that the Beiya lamprophyre melts were derivative and resulted from the mixing between basic melts that were related to the partial melting of phenocrysts of spinel iherzolite from a mantle source. The alkaline melts originated from partial melting along the Jinshajiang subduction ductile shear zone at the contact between the buried Palaeo-Tethyan oceanic lithosphere and the upper mantle lithosphere. The alkaline melts are composed of 65% sanidine (Or70Ab28An2) and 35% SiO2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8–10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.  相似文献   

6.
Cerro Redondo is an ancient cinder cone now almost completely eroded, sited over a sill that corresponds to a sub-volcanic magma chamber, in Santa Cruz province, Patagonia, Argentina. It is composed of Pliocene-Pleistocene alkaline basalt containing spinel-facies lherzolite and harzburgite mantle xenoliths. Core compositions of pyroxenes indicate temperatures of 823 °C to 1043 °C and pressures of 12.4 kb to 21.4 kb. Based on PT estimates, petrographic, geochemical, and isotopic characteristics, we propose that Cerro Redondo xenoliths come from a thick homogeneous mantle column (36 km to 63 km depth), and present different degrees of basalt infiltration. A simple mixing model based on Sr isotopes was used to quantify the host basalt infiltration, and contamination values of 0.0%, 0.2%, 3%, and 12% were obtained for samples X-F, X-D, X-C, and X-B, respectively. For unknown reasons, samples X-G and X-E suffered selective isotopic and trace element modification, respectively, associated with 1% of basalt infiltration. Sample X-F best represents the sub-continental lithospheric mantle column, conserving primary equilibrium textures with sharp grain boundaries, and having TiO2, CaO, Na2O, K2O, and P2O5 contents lower than average spinel lherzolite, flat chondrite-normalized REE pattern, and 87Sr/86Sr and 143Nd/144Nd ratios of 0.70519 and 0.51297, respectively. This sample records a decoupling of the Sr–Nd system where Sr ratios increase at constant Nd ratios, possibly caused by chromatographic processes. Its 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are 17.987, 15.556, and 37.959, respectively. As the interaction with the host basalt increases, xenoliths show a gradual increase of disequilibrium textures such as reaction rims and exsolution lamellae in orthopyroxene and clinopyroxene, and increase of TiO2, CaO, Al2O3, Na2O, K2O, P2O5, LREE, and incompatible element concentrations. The Sr–Nd system shows an unusual positive trend from the unmodified sample X-F toward the host basalt isotope composition with 87Sr/86Sr and 143Nd/144Nd ratios of 0.70447 and 0.51279, respectively, while 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios tend to increase toward those of the host basalt (18.424, 15.648, and 38.728, respectively) as the xenolith–basalt interaction increases. The basalt–xenolith reaction probably started during the transport of the xenoliths to the surface, and continued during the residence of xenoliths in the sub-volcanic magma chamber of Cerro Redondo.  相似文献   

7.
R. V. Fodor  B. B. Hanan   《Lithos》2000,51(4):435-304
The Columbia seamount 825 km offshore from Brazil at 20°S lies on the east–west ‘trace’ of the Trindade hotspot. Continental and oceanic magmatism believed to have originated with this hotspot is alkalic and SiO2-undersaturated, and dates from 85 Ma in southern Brazil to <3 Ma on the islands of Trindade and Martin Vaz 1100 km offshore. An ankaramite (clinopyroxene 16 vol%) dredged from Columbia seamount (est. 10 Ma) conforms to this geochemistry with SiO2-undersaturated Al-rich clinopyroxene (8–13 wt.% Al2O3) and rhönite. Clinopyroxene isotopic compositions are 87Sr/86Sr=0.703900, 143Nd/144Nd=0.512786, 206Pb/204Pb=19.190, 207Pb/204Pb=15.045, and 208Pb/204Pb=39.242 — resembling those for Trindade, except for slightly higher 207Pb/204Pb. The isotopic composition and abundance ratios among weathering-resistant Nb, La, and Yb suggest that Columbia seamount magmatism represents the present-day Trindade plume, but 10 million years earlier and perhaps when the plume manifested a signature of ‘contamination’ from subducted sediments. The Columbia seamount analyses provide the first quantitative assessment for the Trindade hotspot trace existing between the Brazil margin and Trindade, strengthening the case for a continuum of magmatism extending from the 85 Ma Brazilian igneous provinces of Poxoréu and Alto Paranaiba.  相似文献   

8.
The Oshurkovo Complex is a plutonic sheeted complex which represents numerous successive magmatic injections into an expanding system of subparallel and subvertical fractures. It comprises a wide range of rock types including alkali monzodiorite, monzonite, plagioclase-bearing and alkali-feldspar syenites, in the proportion of about 70% mafic rocks to 30% syenite. We suggest that the variation within the complex originated mainly by fractional crystallization of a tephrite magma.

The mafic rocks are considered as plutonic equivalents of lamprophyres. They exhibit a high abundance of ternary feldspar and apatite, the latter may attain 7–8 vol.% in monzodiorite. Ternary feldspar is also abundant in the syenites. The entire rock series is characterized by high Ba and Sr concentrations in the bulk rock samples (3000–7000 ppm) and in feldspars (up to 1 wt.%). The mafic magma had amphibole at the liquidus at 1010–1030 °C based on amphibole geothermometer. Temperatures as low as this were due to high H2O and P2O5 contents in the melt (up to 4–6 and 2 wt.%, respectively). Crystallization of the syenitic magmas began at about 850 °C (based on ternary feldspar thermometry). The series was formed at an oxygen fugacity from the NNO to HM buffer, or even higher.

The evolution of the alkali monzodiorite–syenite series by fractional crystallization of a tephritic magma is established on the basis of geological, mineralogical, geochemical and Sm–Nd and Rb–Sr isotope data. The geochemical modeling suggests that fractionation of amphibole with subordinate apatite from the tephrite magma leaves about 73 wt.% of the residual monzonite melt. Further extraction of amphibole and plagioclase with minor apatite and Fe–Ti oxides could bring to formation of a syenite residuum. Rb–Sr isotopic analyses of biotite, apatite and whole-rock samples constrain the minimum age of basic intrusions at ca. 130 Ma and that of cross-cutting granite pegmatites at ca. 120 Ma. Hence the entire evolution took place in an interval of ≤10 My. Initial 87Sr/86Sr ratios for the mafic rocks range from 0.70511 to 0.70514, and for syenites from 0.70525 to 0.70542. Initial Nd (130 Ma) values for mafic rocks vary from −1.9 to −2.4, and for syenites from −2.9 to −3.5. In a Nd(T) vs. (87Sr/86Sr)i diagram, all rock types of the complex fall in the enriched portion of the Mantle Array, suggesting their derivation from a metasomatized mantle source. However, the small but distinguishable difference in Sr and Nd isotopic compositions between mafic rocks and syenites probably resulted from mild (10–20%) crustal contamination during differentiation. Large negative Nb anomalies are interpreted as a characteristic feature of the source region produced by Precambrian fluid metasomatism above a subduction zone rather than by crustal contamination.  相似文献   


9.
大兴安岭北段新林地区晚古生代花岗岩主要出露在大乌苏和富西里附近,岩性主要为二长花岗岩,另有少量花岗闪长岩。对其中二长花岗岩样品进行LA-ICP-MS锆石U-Pb测年表明,大乌苏和富西里岩体侵位年龄分别为(303.7±2.2)和(300.5±0.5)Ma,均为晚石炭世岩浆活动的产物。花岗岩具有富硅(w(SiO2)为66.77%~75.85%)、富碱(w(Na2O+K2O)为7.41%~8.69%)、高铝(w(Al2O3)为12.90%~16.22%),低MgO、CaO、TiO2的特点,属于钙碱性系列;铝饱和指数(A/CNK)为1.06~1.44,为过铝质岩石;镜下未见原生白云母、堇青石、石榴石等富铝矿物,不同于富铝的S型花岗岩;而w(P2O5)与w(SiO2)负相关,呈I型花岗岩特征;富集LREE和Ba、Rb、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,与后造山I型花岗岩特征相似,应形成于拉张的构造环境。花岗岩的87Sr/86Sr为0.712 938、143Nd/144Nd为0.512 386,(87Sr/86Sr)i值为0.704 4,εNdt)值为-1.09,TDM2=1 172 Ma,源区物质主要为中-新元古代从亏损地幔增生的地壳物质。结合区域研究成果,大兴安岭新林地区晚石炭世岩浆侵位活动与额尔古纳-兴安地块和松嫩地块碰撞拼合后岩石圈伸展环境有关。  相似文献   

10.
冀东秦家峪锰矿赋存于中元古界蓟县系高于庄组二段底部含锰岩系内,其成因尚不明确.以秦家峪锰矿ZK58-2钻孔样品为研究对象,通过显微薄片观察、电子探针分析及全岩地球化学分析等方法,探讨了高于庄组锰矿的锰质来源和沉积环境对成矿的贡献.显微薄片观察、电子探针分析表明,原生矿带中含锰矿物主要为菱锰矿、铁镁菱锰矿、钙菱锰矿、锰方...  相似文献   

11.
Many continental flood basalts (CFB) have isotope and trace-element signatures that differ from those of oceanic basalts and much interest concerns the extent to which these reflect differences in their upper mantle source regions. A review of selected data sets from the Mesozoic and Tertiary CFB confirms significant differences in their major- and trace-element compositions compared with those of basalts erupted through oceanic lithosphere. In general, those CFB suites characterised by low Nb/La, high (87Sr/86Sr)i and low εNdi tend to exhibit relatively low TiO2, CaO/Al2O3, Na2O and/or Fe2O3, and relatively high SiO2. In contrast, those which have high Nb/La, low (87Sr/86Sr)i and high εNdi ratios, like the upper units in the Deccan Traps, have major- and trace-element compositions similar to oceanic basalts. It would appear that those CFB that have distinctive isotope and trace-element ratios also exhibit distinctive major-element contents, suggesting that major and trace elements have not been decoupled significantly during magma generation and differentiation.

When compared (at 8% MgO) with oceanic basalt trends, the displacement of many CFB to lower Na2O, Fe2O3*, TiO2 and CaO/Al2O3, but higher SiO2, at similar Mg#, is not readily explicable by crustal contamination. Rather, it reflects source composition and/or the effects of the melting processes. The model compositions of melts produced by decompression of mantle plumes beneath continental lithosphere have relatively low SiO2 and high Fe2O3*. In contrast, the available experimental data indicate that partial melts of peridotite have low TiO2, Na2O and Fe2O3*CaO/Al2O3, if the peridotite has been previously depleted by melt extraction. Moreover, melting of hydrated, depleted peridotite yields SiO2-rich, Fe2O3- and CaO-poor melts. Since anhydrous, depleted peridotite has a high-temperature solidus, it is argued that the source of these CFB was variably melt depleted and hydrated mantle, inferred to be within the lithosphere. Isotope data suggest these source regions were often old and relatively enriched in incompatible trace elements, and it is envisaged that H2O±CO2 were added at the same time as the incompatible elements. An implication is that a significant proportion of the new continental crust generated since the Permian reflected multistage processes involving mobilization of continental mantle lithosphere that was enriched in minor and trace elements during the Proterozoic.  相似文献   


12.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

13.
Major, trace element, Sr isotopic and mineral chemical data are reported for mafic volcanic rocks (Mg-value 65) from the northern-central sector of the potassic volcanic belt of Central Italy. The rocks investigated range from potassic series (KS) and high-K series (HKS) to lamproitic (LMP) and kamafugitic (KAM) through a transitional series (TRANS), thus covering the entire compositional spectrum of potassic and ultrapotassic magmas. KAM rocks are strongly silica undersaturated and, compared with the other rock series, have low SiO2, Al2O3, Na2O, Sc and V and high CaO, K/Na, (Na + K)/Al. KS and HKS have high Al2O3, CaO and variable enrichment in K2O and incompatible elements. LMP rocks are saturated in silica and have high SiO2, K2O, K2O/Na2, MgO, Ni and Cr and low Al2O3, CaO, Na2O, Sc and V. TRANS rocks display intermediate compositional characteristics between LMP and KS.

All the rocks under study have fractionated hygromagmaphile element patterns with high LIL/HFS element values and negative anomalies of Ti, Ta, Nb and Ba. Negative Sr anomalies are observed in the LMP and TRANS rocks. LIL elements show overall positive correlations with K2O, whereas different trends of Sr and HFSE vs. K2O are defined by LMP-TRANS and KS-HKS-KAM. 87Sr/86Sr range from about 0.710 to 0.716. KS, HKS and KAM rocks have similar 87Sr/86Sr values clustering around 0.710. LMP and TRANS rocks have the highest 87Sr/86Sr values.

Geochemical and isotopic data reported for the most primitive Italian potassic and ultrapotassic rocks support the hypothesis that the interaction between crustal and mantle reservoirs was a main process in the genesis of Italian potassic magmatism. Simple mass balance calculations exclude, however, an important role of crustal assimilation during ascent of subcrustal magmas to the surface and indicate that the sources of Central Italy volcanics underwent contamination with fluids and/or melts released by upper crustal material previously brought into the mantle by subduction processes.

Different trends of incompatible elements vs. K2O observed in the studied rocks suggest distinct metasomatic processes for the sources of the investigated magmas. Liquids derived by bulk melting of pelitic sediments are believed to be the most likely contaminants of the source of LMP rocks. Fluids or melts rich in Ca, Sr and with high LILE/HFSE value and Sr isotopic composition around 0.710 are the most likely contaminant of the source region of KS, HKS and KAM volcanics. Variations in CaO, Na2O and ferromagnesian element abundances and ratios suggest that, in some zones, the mantle source of potassic magmas experienced partial melting with extraction of basaltic liquids prior to metasomatism.  相似文献   


14.
B. Bühn  R. B. Trumbull 《Lithos》2003,66(3-4):201-221
We compare the petrogenetic and chemical signatures of two alkali silicate suites from the Cretaceous Damaraland igneous province (Namibia), one with and one without associated carbonatite, in order to explore their differences in terms of magma source and evolution. The Etaneno complex occurs in close spatial proximity to the Kalkfeld bimodal carbonatite–alkali silicate complex, and is dominated by nepheline (ne)-monzosyenites and ne-bearing alkali feldspar syenites. The Etaneno samples have isotopic compositions of 87Sr/86Sr(i)=0.70462–0.70508 and Nd=−0.5 to −1.5, with the highest 87Sr/86Sr(i) and lowest Nd values observed in evolved samples. The magma differentiated via olivine, feldspar, clinopyroxene, and nepheline (ne) fractionation in a F-rich system, which fractionated Zr from Hf, and Y from Ho. Partly glassy, recrystallized inclusions in some samples are less evolved than their host rocks and contain a cumulate component (nepheline, plagioclase). The Kalkfeld ne-foidites (ijolites) and ne-syenites have 87Sr/86Sr(i)=0.70285–0.70592 and Nd=0.5 to 1.1. The isotope ratios show no consistent variation with rock composition, and they are in the same range as the associated carbonatites. The Kalkfeld silicate magma fractionated nepheline and alkali-feldspar in a CO2-dominated, F- and Ca-poor system. As a result, the rocks display some major and trace element trends distinctly different from those of the Etaneno samples.

We suggest that the Etaneno and the Kalkfeld magmas represent different melt fractions of a heterogeneous mantle source, resulting in different compositions especially with respect to CO2 contents of the primitive, parental magmas. In this scenario, the carbonated alkali silicate Kalkfeld parental melt contained a critical CO2 concentration and underwent liquid separation of carbonate and silicate melt fractions at crustal depths. The resulting silicate melt fraction experienced a very different mode of differentiation than the carbonate-poor Etaneno parental magma. Thus, the Kalkfeld rocks are depleted in Ca and other divalent cations, as well as F, rare-earth elements (REE), Ba, and P relative to the Etaneno syenites. We interpret these differences to reflect the partitioning of these elements into the carbonate melt fraction during immiscible separation.  相似文献   


15.
沙德盖岩体位于华北克拉通北缘中段、哈达门沟大型金(钼)矿田范围内。首次利用锆石 SHRIMP U-Pb法对其定年,获得15个锆石颗粒206Pb/238U年龄的加权平均值(221.6±2.1) Ma(MSWD=1.6),表明岩体侵位于印支中期。岩石地球化学特征表现为高硅(SiO2质量分数为71.21%~73.67%)、富钾(K2O/Na2O为1.01~1.37)、富碱(K2O+Na2O为8.23%~9.96%)、弱过铝质(Al2O3为13.11%~14.31%),里特曼指数σ=2.43~3.52,钙碱性-碱性;富集轻稀土(LREE/HREE为17.68~14.92,(La/Yb)|N为22.85~16.58)和Eu略亏损(δEu=0.95~0.93);微量元素亏损Nb、Ta、P、Ti、Sr,富集K、La、Ce、Hf等元素,具有A型花岗岩特征;(87Sr/86Sr)i=0.705 31~0.702 29,(143Nd/144Nd)i=0.511 682~0.511 620,εNd(t)=-13.1~-14.3,具有壳源特点;钕两阶段模式年龄T2DM=2 061~2 160 Ma,在铅构造模式图上样品投点于地幔与下地壳之间。综合分析认为其形成于同碰撞向后碰撞构造体制转换,伸展构造和幔源基性岩浆的底侵导致早期古老基底地壳部分熔融,很可能是形成沙德盖岩体的主要动力机制。华北克拉通北缘印支期构造岩浆活动及成矿作用是普遍存在的。  相似文献   

16.
The Pan-African (572 Ma) Puttetti syenite (A-type granitoid)-pyroxenite association intrudes the high-grade metamorphic terrain of the Trivandrum Block, South India. Field evidence indicates the contemporaneous nature of syenitic and pyroxenitic liquids. The occurrence of a mixed-rock (~70% syenite and 30% pyroxenite) with an emulsion-like texture, and the occurrence of pyroxenite globules in syenite, is interpreted as relics of immiscible magmas. Both syenite and pyroxenite show similar mineral assemblage (with major minerals having overlapping compositions), but the relative proportions differ. Major element and trace element partitioning trends, parallel REE patterns, and similar Sr initial isotope compositions are in accord with behavior either predicted or measured for immiscible melts in experimental and/or natural systems. The more pronounced Eu anomalies and LREE/HREE ratios of syenite and pyroxenite (relative to the mixed-rock) is related to fractionation caused by immiscible separation. The proposed origin of the Puttetti pluton involves the intrusion of a magma whose bulk composition is that of the mixed-rock. This melt behaved immiscibly and split into two fractions, which produced the syenite and pyroxenite magmas.Editorial responsibility: T. Grove  相似文献   

17.
Petrogenesis of collision-related plutonics in Central Anatolia, Turkey   总被引:7,自引:0,他引:7  
Central Anatolia exhibits good examples of calc-alkaline and alkaline magmatism of similar age in a collision-related tectonic setting (continent–island arc collision). In the Central Anatolia region, late Cretaceous post-collisional plutonic rocks intrude Palaeozoic–Mesozoic metamorphic rocks overthrust by Upper Cretaceous ophiolitic units to make up the Central Anatolian Crystalline Complex.

In the complex, three different intrusive rock types may be recognised based on their geochemical characteristics: (i) calc-alkaline (Behrekdag, Cefalikdag, and Celebi); (ii) subalkaline-transitional (Baranadag); and (ii) alkaline (Hamit). The calc-alkaline and subalkaline plutonic rocks are metaluminous I-type plutons ranging from monzodiorite to granite. The alkaline plutonic rocks are metaluminous to peralkaline plutons, predominantly A-type, ranging from nepheline monzosyenite to quartz syenite.

All intrusive rocks show enrichment in LILE and LREE relative to HFSE, and have high 87Sr/86Sr and low 143Nd/144Nd ratios. These characteristics indicate an enriched mantle source region(s) carrying a subduction component inherited from pre-collision subduction events. The tectonic discrimination diagram of Rb vs. (Y+Nb) suggests that the calc-alkaline, subalkaline, and alkaline plutonic rocks have been affected by crustal assimilation combined with fractional crystallisation processes.

The coexistence of calc-alkaline and alkaline magmatism in the Central Anatolian Crystalline Complex may be attributed to mantle source heterogeneity before collision. The former carries a smaller intraplate component and pre-subduction enrichment compared to the latter. Either thermal perturbation of the metasomatised lithosphere by delamination of the thermal boundary layer (TBL), or removal of a subducted plate (slab breakoff) is the likely mechanism for the initiation of the post-collisional magmatism in the Complex.  相似文献   


18.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

19.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   


20.
Andreas Stracke  Ernst Hegner 《Lithos》1998,45(1-4):545-560
The Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain occurs in a zone of lithospheric extension superimposed on a post-collisonal tectonic setting along the Pacific and Indo-Australian plates northeast of Papua New Guinea. We present geochemical and Sr, Nd, and Pb isotope data for volcanic rocks from these islands and three recently discovered seamounts located at Lihir island. Major element data document an alkalic affinity of the sample suite and trachybasalts as the predominant rock type. Negative Nb-anomalies in extended trace element patterns, enrichment of the light rare earth elements, and Ce/Pb ratios of about 4 are typical of the values in calc alkaline island arc volcanics and support an origin from subduction-modified mantle. 87Sr/86Sr ratios of 0.7037 to 0.7044 and Nd values of +5.6 to +6.8 indicate that the upper mantle evolved with a time-integrated depletion in LREE, however, not as severe as that recorded in basalts from the East Pacific Rise. Variable 87Sr/86Sr ratios at less variable 143Nd/144Nd ratios suggest that 87Sr/86Sr ratios of the melts were modified by secondary processes, such as assimilation of seawater Sr from crustal rocks. The Pb isotope ratios are uniform, moderately radiogenic (206Pb/204Pb ca. 18.7 to 18.8), and similar to those reported for the active Mariana arc. Elevated 207Pb/204Pb ratios relative to Pacific MORB suggest melting of small amounts of subducted sediments (ca. 1–2 wt.%). An important control of subducted sediment on the chemistry of the melts can also be inferred from the ratios of highly incompatible trace elements (e.g., Th, U, Pb, La, and Nb). Additional mantle enrichment by subduction derived fluids is reflected in high values of highly incompatible trace element ratios between fluid mobile (e.g., Ba) and fluid immobile elements (e.g., Th, Nb). The results of this study document that the chemical composition of igneous rocks from post-collisional tectonic settings are strongly influenced by previous plate tectonics. This conclusion implies that the information conveyed by tectonic discrimination diagrams for these rocks must be interpreted with care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号