首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   5篇
测绘学   1篇
大气科学   15篇
地球物理   30篇
地质学   43篇
海洋学   8篇
天文学   25篇
自然地理   5篇
  2023年   1篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   13篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   2篇
  2005年   6篇
  2003年   5篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
  1973年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
1.

Background

The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013–2020) was accounting mitigation as deviation from a projected (forward-looking) “forest reference level”, which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.

Results

Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013–2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110–120 Mt CO2/year (capped at 70–80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000–2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000–2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.

Conclusions

Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
  相似文献   
2.
This is the first part of a study on the seismic response of the L’Aquila city using 2D simulation and experimental data. We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0°–90°. Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding synthetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal components have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90°. The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.  相似文献   
3.
The Radicofani Volcano is characterised by few lava flows, a cinder cone and a denudated neck, and is part of the Tuscan Magmatic Province, the northernmost volcanic region of the Italian peninsula. In spite of the short time span of activity, a large time-dependant chemical and isotopic variability is observed. Most of the rocks of the Radicofani volcano are ultrapotassic shoshonites associated to younger basaltic andesites, found at the bottom of the neck. K2O contents are positively correlated with trace element and isotopic variations. Shoshonitic and high-K calc-alkaline rocks of the Radicofani volcano are significantly different from shoshonites occurring in association with leucite-bearing ultrapotassic rocks in the southernmost portion of the Roman Magmatic Province. The studied rocks are characterised by high, but variable, levels of incompatible trace elements with a subduction-related signature, with troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.71333 to 0.71588, 143Nd/144Nd ranges from 0.512050 to 0.512183, while the lead isotope ratios vary between 18.672 and 18.716 for 206Pb/204Pb, 15.665 to 15.696 for 207Pb/204Pb, and 39.981 to 39.081 for 208Pb/204Pb. Ultrapotassic shoshonites show the highest incompatible trace element contents coupled with the highest 87Sr/86Sr and the lowest 143Nd/144Nd. On the basis of geochemical and isotopic signatures it is argued that magmas were generated in a modified lithospheric peridotitic source containing metasomatic veins generated by K-rich melts from recycled sediments within the mantle via subduction. A further metasomatic event generated by slab-derived fluids pervasively enriched the peridotitic source. Partial melting of the veins produced leucite-free ultrapotassic magmas (i.e. lamproite), and was triggered by rising of the isotherms after the orogenic front migrated eastward in the Italian Peninsula. Further rise of the isotherms induced larger degrees of partial melting inducing melting of the surrounding wall peridotite. The variation of the degree of partial melting of such a heterogeneous peridotitic source produced a wide spectrum of magma compositions, which mimic a mixing line between two components: ultrapotassic magma from partial melting of the metasomatic vein and a basaltic andesitic magma from partial melting of the surrounding peridotite.  相似文献   
4.
Though ubiquitous in the global oceans, double diffusive mixing has been largely ignored or poorly represented in the models of turbulent mixing in the ocean and in 3-D ocean models, until recently. Salt fingers occur in the interior of many marginal seas and ocean basins, the Tyrrhenian Sea and the subtropical Atlantic being two examples. Diffusive convection type of double diffusion occurs in the upper layers of many sub-polar seas and polar oceans due to cold melt water from sea ice. Consequently, it is important to be able to properly parameterize double diffusive mixing in basin scale and global ocean models, so that the water mass structure in the interior of the ocean can be properly simulated. This note describes a model for double diffusive mixing in the presence of background shear, based on Mellor–Yamada type second moment closure, more specifically Kantha, 2003, Kantha and Clayson, 2004 second moment closure models of resulting turbulence, following Canuto et al. (2008a) but employing a different strategy for modeling the pertinent terms in the second moment equations. The resulting model is suitable for inclusion in ocean general circulation models.  相似文献   
5.
Annex I Parties may receive credits or debits from Land Use, Land Use Change and Forestry (LULUCF) activities, contributing to achieving individual emission reduction targets. In the Durban climate negotiations, Parties agreed new LULUCF accounting rules for the second commitment period of the Kyoto Protocol (CP2). By using these new rules, this paper presents key differences among Parties at the minimum (assuming no additional action) and potential (assuming additional actions) contribution of the forest-related LULUCF activities in achieving the pledges for 2020. Overall, the potential contribution of LULUCF is relatively modest (up to about 2 % of 1990 emissions) for the EU, the Annex I Parties likely joining the CP2, and for the Annex I Parties that joined the CP1 as a whole. However, for specific Parties, LULUCF can make a substantial contribution to achieving the pledges. For New Zealand, for instance, the potential contribution of future LULUCF credits may equal 33 % of its 1990 emission level. For Australia, the pledges are expressed relative to 2000 emission levels including LULUCF emissions. Given that LULUCF emissions have strongly declined between 1990 and 2000, and a further decline in foreseen by 2020 (based on Australia’s projections), the minimum contribution of LULUCF to meet the Australian pledges appears to be about 19 % and 7 % relative to its 1990 and 2000 emission level, respectively. A further 3 % potential contribution is estimated from additional actions.  相似文献   
6.
7.
The aim of this paper is to study the effects of soil–structure interaction on the seismic response of coupled wall-frame structures on pile foundations designed according to modern seismic provisions. The analysis methodology based on the substructure method is recalled focusing on the modelling of pile group foundations. The nonlinear inertial interaction analysis is performed in the time domain by using a finite element model of the superstructure. Suitable lumped parameter models are implemented to reproduce the frequency-dependent compliance of the soil-foundation systems. The effects of soil–structure interaction are evaluated by considering a realistic case study consisting of a 6-storey 4-bay wall-frame structure founded on piles. Different two-layered soil deposits are investigated by varying the layer thicknesses and properties. Artificial earthquakes are employed to simulate the earthquake input. Comparisons of the results obtained considering compliant base and fixed base models are presented by addressing the effects of soil–structure interaction on displacements, base shears, and ductility demand. The evolution of dissipative mechanisms and the relevant redistribution of shear between the wall and the frame are investigated by considering earthquakes with increasing intensity. Effects on the foundations are also shown by pointing out the importance of both kinematic and inertial interaction. Finally, the response of the structure to some real near-fault records is studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   
9.
All the confirmed Soft Gamma-ray Repeaters have been observed with the EPIC instrument on the XMM–Newton satellite. We review the results obtained in these observations, providing the most accurate spectra on the persistent X-ray emission in the 1–10 keV range for these objects, and discuss them in the context of the magnetar interpretation.   相似文献   
10.
Thanks to INTEGRAL’s long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft gamma rays. This has produced a wealth of new scientific results, which we will review here. Since SGR 1806-20 was particularly active during the last two years, more than 300 short bursts have been observed with INTEGRAL and their characteristics have been studied with unprecedented sensitivity in the 15–200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. In addition, a particularly active state, during which 100 bursts were emitted in 10 minutes, has been observed on October 5 2004, indicating that the source activity was rapidly increasing. This eventually led to the Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80 keV) early afterglow has been detected. The deep observations allowed us to discover the persistent emission in hard X-rays (20–150 keV) from 1806-20 and 1900+14, the latter being in a quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL. D.G. acknowledges the French Space Agency (CNES) for financial support. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. ISGRI has been realized and maintained in flight by CEA-Saclay/DAPNIA with the support of CNES. K.H. is grateful for support under NASA’s INTEGRAL U.S. Guest Investigator program, Grants NAG5-13738 and NNG05GG35G.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号