首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
WenWen Wang 《寒旱区科学》2013,5(2):0240-0250
Based on daily maximum and minimum surface air temperature and precipitation records at 48 meteorological stations in Xinjiang, the spatial and temporal distributions of climate extreme indices have been analyzed during 1961-2008. Twelve temperature extreme indices and six precipitation extreme indices are studied. Temperature extremes are highly correlated to annual mean temperature, which appears to be significantly increasing by 0.08 °C per year, indicating that changes in temperature extremes reflect consistent warming. The warming tendency is clearer at stations in northern Xinjiang as reflected by mean temperature. The frequencies of cold days and nights have both decreased, respectively by 0.86 and 2.45 d/decade, but the frequencies of warm days and nights have both increased, respectively by +1.62 and +4.85 d/decade. Over the same period, the number of frost days shows a statistically significant decreasing trend of 2.54 d/decade. The growing season length and the number of summer days exhibit significant increasing trends at rates of +2.62 and +2.86 d/decade, respectively. The diurnal temperature range has decreased by 0.28 °C/decade. Both annual extreme low and high temperatures exhibit significant increasing trend, with the former clearly larger than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in northwestern Xinjiang have the largest positive trend magnitudes, while stations in northern Xinjiang have the largest negative magnitudes.  相似文献   

2.
The paper presents the analysis of tendencies in water level changes in 32 lakes in Poland during 1976–2010.Series of monthly,seasonal,and annual precipitation and air temperature for 9 meteorological stations were also studied.The trend analysis for all of the studied series of water levels in lakes showed high spatial and temporal variability.Series of annual water levels in the case of 6 lakes showed statistically significant increasing tendencies,and in 7 lakes,significant decreasing trends.Series of annual amplitudes in the majority of lakes(22) showed a decreasing trend,but they were statistically significant only in three cases.The tendencies for air temperature fluctuations are more statistically significant than precipitation.The key role in determining water level changes is played by local factors,particularly including human economic activity,obscuring the effect of natural factors on water level changes.The paper describes cases of changes in water levels in lakes under anthropopressure related to among others: agricultural irrigations,hydropower infrastructure,water transfers,navigation,or mining.  相似文献   

3.
Based on the daily precipitation data of 27 meteorological stations from 1960 to 2009 in the Huaihe River Basin, spatio-temporal trend and statistical distribution of extreme precipitation events in this area are analyzed. Annual maximum series (AM) and peak over threshold series (POT) are selected to simulate the probability distribution of extreme precipitation. The results show that positive trend of annual maximum precipitation is detected at most of used stations, only a small number of stations are found to depict a negative trend during the past five decades, and none of the positive or negative trend is significant. The maximum precipitation event almost occurred in the flooding period during the 1960s and 1970s. By the L-moments method, the parameters of three extreme distributions, i.e., Generalized extreme value distribution (GEV), Generalized Pareto distribution (GP) and Gamma distribution are estimated. From the results of goodness of fit test and Kolmogorov-Smirnov (K-S) test, AM series can be better fitted by GEV model and POT series can be better fitted by GP model. By the comparison of the precipitation amounts under different return levels, it can be found that the values obtained from POT series are a little larger than the values from AM series, and they can better simulate the observed values in the Huaihe River Basin.  相似文献   

4.
Study on hydroclimatological changes in the mountainous river basins has attracted great interest in recent years. Changes in temperature, precipitation and river discharge pattern could be considered as indicators of hydroclimatological changes of the river basins. In this study, the temperatures (maximum and minimum), precipitation, and discharge data from 1980 to 2009 were used to detect the hydroclimatological changes in the Bagmati River Basin, Nepal. Simple linear regression and Mann-Kendall test statistic were used to examine the significant trend of temperature, precipitation, and discharge. Increasing trend of temperature was found in all seasons, although the change rate was different in different seasons for both minimum and maximum temperatures. However, stronger warming trend was found in maximum temperature in comparison to the minimum in the whole basin. Both precipitation and discharge trend were increasing in the pre-monsoon season, but decreasing in the post-monsoon season. The significant trend of precipitation could not be observed in winter, although discharge trend was decreasing. Furthermore, the intensity of peak discharge was increasing, though there was not an obvious change in the intensity of maximum precipitation events. It is expected that all these changes have effects on agriculture, hydropower plant, and natural biodiversity in the mountainous river basin of Nepal.  相似文献   

5.
三江源地区气候变化及其对径流的驱动分析(英文)   总被引:6,自引:3,他引:3  
Based on the precipitation and temperature data of the 12 meteorological stations in the "Three-River Headwaters" region and the observed runoff data of Zhimenda in the headwater sub-region of the Yangtze River, Tangnaihai in the headwater sub-region of the Yellow River and Changdu in the headwater sub-region of the Lancang River during the period 1965-2004, this paper analyses the trends of precipitation, temperature, runoff depth and carries out significance tests by means of Mann-Kendall-Sneyers sequential trend test. Makkink model is applied to calculate the potential evaporation. The runoff model driven by precipitation and potential evaporation is developed and the influence on runoff by climate change is simulated under different scenarios. Results show that during the period 1965-2004 the temperature of the "Three-River Headwaters" region is increasing, the runoff of the three hydrological stations is decreasing and both of them had abrupt changes in 1994, while no significant trend changes happen to the precipitation. The runoff model suggests that the precipitation has a positive effect on the runoff depth, while the potential evaporation plays a negative role. The influence of the potential evaporation on the runoff depth of the Lancang River is found to be the significant in the three rivers; and that of the Yellow River is the least. The result of the scenarios analysis indicates that although the precipitation and the potential evaporation have positive and negative effects on runoff relatively, fluctuated characteristics of individual effect on the runoff depth in specific situations are represented.  相似文献   

6.
中国东部植被NDVI对气温和降水的时空响应(英文)   总被引:8,自引:4,他引:4  
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year,spring,summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China.The results indicate that as a whole,the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China.Vegetation NDVI maxi...  相似文献   

7.
近50年华北地区极端气候分析   总被引:6,自引:0,他引:6  
Climate extremes for agriculture-pasture transitional zone, northem China, are analyzed on the basis of daily mean temperature and precipitation observations for 31 stations in the period 1956-2001. Analysis season for precipitation is May-September, i.e., the rainy season. For temperature is the hottest three months, i.e., June through August. Heavy rain events, defined as those with daily precipitation equal to or larger than 50 mm, show no significant secular trend. A jump-like change, however, is found occurring in about 1980. For the period 1980-1993, the frequency of heavy rain events is significantly lower than the previous periods. Simultaneously, the occurring time of heavy rains expanded, commencing about one month early and ending one month later. Long dry spells are defined as those with longer than 10 days without rainfall. The frequency of long dry spells displays a significant (at the 99% confidence level) trend at the value of 8.3% /10a. That may be one of the major causes of the frequent droughts emerging over northern China during the last decades. Extremely hot and low temperature events are defined as the uppermost 10% daily temperatures and the lowest 10% daily temperatures, respectively. There is a weak and non-significant upward trend in frequency of extremely high temperatures from the 1950s to the mid-1990s. But the number of hot events increases as much as twice since 1997. That coincides well with the sudden rise in mean summer temperature for the same period. Contrary to that, the fiequency of low temperature events have been decreasing steadily since the 1950s, with a significant linear trend of-15%/10a.  相似文献   

8.
The glaciers of the Hengduan Mountains play an important role in the hydrology processes of this region. In this study, the HBV Light model, which relies on a degree-day model to simulate glacier melting, was employed to simulate both glacier runoff and total runoff. The daily temperature and precipitation at the Hailuo Creek No. 1 Glacier from 1952 to 2009 were obtained from daily meteorological observed data at the glacier and from six national meteorological stations near the Hailuo Creek Basin. The daily air temperature, precipitation, runoff depth, and monthly potential evaporation in 1995, 1996, and 2002 were used to obtain a set of optimal parameters, and the annual total runoff and glacier runoff of the Hailuo Creek Glacier(1952–2009) were calculated using the HBV Light model. Results showed the average annual runoff in the Hailuo Creek Basin was 2,114 mm from 1952 to 2009, of which glacial melting accounted for about 1,078 mm. The river runoff in the Hailuo Creek catchment increased as a result of increased glacier runoff. Glacier runoff accounted for 51.1% of the Hailuo Creek stream flow in 1994 and increased to 72.6% in 2006. About 95% of the increased stream flow derived from the increased glacier runoff.  相似文献   

9.
1956-2000年云南红河流域径流的时空分布   总被引:4,自引:1,他引:3  
This paper studies the variation of runoff of Red River Basin and discusses the influence of"corridor-barrier"functions of valleys and mountains on variation of runoff by using GIS and statistic methods based on the monthly precipitation,temperature and evaporation data from 1960 to 2000 at 32 meteorological stations in Red River Basin,and the annual runoff data of Yuanjiang River,Lixian River and Panlong River from 1956 to 2000.The results show out:(1)Under the effect of"corridor-barrier"functions of valleys and mountains in Red River Basin,the patterns of annual precipitation and runoff depth distribution in spatial change a NW-SE direction,which is similar with the trend of the Red River valley and Ailao mountains.(2)In the long temporal scale averaged over years,the most obvious effects of the"corridor-barrier"functions is on runoff variation,and the second is on the precipitation, but not obvious on the temperature.(3)Under the superposed effect of climate changes and the"corridor-barrier"functions of valleys and mountains in Red River Basin,the difference of runoff variation is obvious in the east-west direction:the runoff variation of Yuanjiang River along the Red River Fault present an ascending trend,but the Lixian River on the west side of the Fault and the Panlong River on the east present a descending trend;the annual runoff in Yuanjiang River and Panlong River had a quasi-5a periods,and Panlong River had a quasi-8a periods;the runoff variation are quite inconsistent in different periods among the three river basins.  相似文献   

10.
华北平原降水的长期趋势分析(英文)   总被引:4,自引:1,他引:3  
The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen’s slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.  相似文献   

11.
This paper uses HJ-1 satellite multi-spectral and multi-temporal data to extract forest vegetation information in the Funiu Mountain region. The S-G filtering algorithm was employed to reconstruct the MODIS EVI(Enhanced Vegetation Index) time-series data for the period of 2000–2013, and these data were correlated with air temperature and precipitation data to explore the responses of forest vegetation to hydrothermal conditions. The results showed that:(1) the Funiu Mountain region has relatively high and increasing forest coverage with an average EVI of 0.48 over the study period, and the EVI first shows a decreasing trend with increased elevation below 200 m, then an increasing trend from 200–1700 m, and finally a decreasing trend above 1700 m. However, obvious differences could be identified in the responses of different forest vegetation types to climate change. Broad-leaf deciduous forest, being the dominant forest type in the region, had the most significant EVI increase.(2) Temperature in the region showed an increasing trend over the 14 years of the study with an anomaly increasing rate of 0.27℃/10a; a fluctuating yet increasing trend could be identified for the precipitation anomaly percentage.(3) Among all vegetation types, the evergreen broad-leaf forest has the closest EVI-temperature correlation, whereas the mixed evergreen and deciduous forest has the weakest. Almost all forest types showed a weak negative EVI-precipitation correlation, except the mixed evergreen and deciduous forest with a weak positive correlation.(4) There is a slight delay in forest vegetation responses to air temperature and precipitation, with half a month only for limited areas of the mixed evergreen and deciduous forest.  相似文献   

12.
This study firstly analyzed the shrinkage of winter wheat and the changes of crop- ping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calcu- lated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×10^4 ha. The shrinkage was most serious in the Bei- jing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%-30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 ram. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×10^8 m^3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

13.
This study firstly analyzed the shrinkage of winter wheat and the changes of cropping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calculated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×104ha. The shrinkage was most serious in the Beijing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%–30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 mm. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×108m3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

14.
This study uses two forms of the Palmer Drought Severity Index(PDSI), namely the PDSI_TH(potential evapotranspiration estimated-by the Thornthwaite equation) and the PDSI_PM(potential evapotranspiration estimated by the FAO Penman-Monteith equation), to characterize the meteorological drought trends during 1960–2016 in the Loess Plateau(LP) and its four subregions. By designing a series of numerical experiments, we mainly investigated various climatic factors' contributions to the drought trends at annual, summer, and autumn time scales. Overall, the drying trend in the PDSI_TH is much larger than that in the PDSI_PM. The former is more sensitive to air temperature than precipitation, while the latter is the most sensitive to precipitation among all meteorological factors. Increasing temperature results in a decreasing trend(drying) in the PDSI_TH, which is further aggravated by decreasing precipitation, jointly leading to a relatively severe drying trend. For the PDSI_PM that considers more comprehensive climatic factors, the drying trend is partly counteracted by the declining wind speed and solar radiation. Therefore, the PDSI_PM ultimately shows a much smaller drying trend in the past decades.  相似文献   

15.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5(low emission scenario) and RCP8.5(high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that:(1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases.(2) While the historical temperature increase rate is 0.35°C/10 a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10 a, compared to 0.19°C/10 a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

16.
Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qinghai-Tibet Plateau, China. At the ice-free cirque basins in the headwaters of the Urumqi River(hereafter referred to as the Ice-Free Cirque) in eastern Tianshan, China, the hydrological effects of the alpine permafrost active layers appear to have also exhibited significant changes recently. The increasing trend of local precipitation is clear in May and June. The onset of winter and spring snowmelt runoff clearly lags behind increases of air temperature, and the runoff peak appears near the beginning of the melting season, which results in the spring runoff increasing. In summer, runoff decreases strongly and the maximum runoff occurs earlier. In our analysis of meteorological and hydrologic data from 1959 to 2010, the runoff and precipitation changes are significantly correlated. In the initial stage of runoff, the runoff-producing process is mainly under the control of the soil water content and soil temperature in the 0–30 cm active layers. Spring precipitation and snowmelt water are mainly involved in the processes of infiltration and evaporation while some melt water infiltrates into the seasonal thawed layer and stays above the frozen layers. During the strong ablation period in summer, the runoff-generating process is mainly controlled by soil water content in the active layers deeper than 60 cm. In the active layer, precipitation and seasonal snowmelt water infiltrates, migrates, collects, and then forms runoff.  相似文献   

17.
Based on the daily precipitation from a 0.5°×0.5° gridded dataset and meteorological stations during 1961–2011 released by National Meteorological Information Center, the reliability of this gridded precipitation dataset in South China was evaluated. Five precipitation indices recommended by the World Meteorological Organization(WMO) were selected to investigate the changes in precipitation extremes of South China. The results indicated that the bias between gridded data interpolated to given stations and the corresponding observed data is limited, and the proportion of the number of stations with bias between –10% and 0 is 50.64%. The correlation coefficients between gridded data and observed data are generally above 0.80 in most parts. The average of precipitation indices shows a significant spatial difference with drier northwest section and wetter southeast section. The trend magnitudes of the maximum 5-day precipitation(RX5day), very wet day precipitation(R95), very heavy precipitation days(R20mm) and simple daily intensity index(SDII) are 0.17 mm·a–1, 1.14 mm·a–1, 0.02 d·a–1 and 0.01 mm·d–1·a–1, respectively, while consecutive wet days(CWD) decrease by –0.05 d·a–1 during 1961–2011. There is spatial disparity in trend magnitudes of precipitation indices, and approximate 60.85%, 75.32% and 75.74% of the grid boxes show increasing trends for RX5 day, SDII and R95, respectively. There are high correlations between precipitation indices and total precipitation, which is statistically significant at the 0.01 level.  相似文献   

18.
Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia(CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957–2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature(Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32℃/10 a, 0.24℃/10 a and 0.41℃/10 a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10 a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days(CDD), which significantly decreased at a rate of –3.17 days/10 a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik(Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman's correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.  相似文献   

19.
Annual freezing and thawing index of 7 meteorological stations along the Qing- hai-Xizang Railway were calculated based on daily maximum and minimum temperature records for 1966-2004. Trends of annual freezing and thawing index were analyzed using the Mann-Kendall test and a simple linear regression method. The results show that: 1) The mean annual freezing indices range from 95 to 2300℃·d and the mean annual thawing indices range from 630 to 3250℃·d. The mean annual freezing index of the 7 stations exhibited decreasing trends with decreasing rate of -16.6- -59.1 ℃·d/10a. The mean annual thawing index of these 7 stations showed increasing trends with the related decreasing rate is 19.83-45.6℃·d/10a. 2) The MK trend test indicated the significant decreasing trends (significant at 〈 0.05 significant level) in the annual freezing index for most stations except for Golmud. The significant increasing trends can be observed in the annual thawing index for 4 stations except Golmud and Tuotuohe. Golmud was the only station with no trends in both annual freezing and annual thawing index.  相似文献   

20.
On the basis of two gridded datasets of daily precipitation and temperature with a spatial resolution of 0.5°×0.5°, and meteorological station data released by the National Meteorological Information Center(NMIC) during 1961–2013, the spatial and temporal variations of total amount of precipitation, amount of rainfall, amount of snowfall and snowfall/rainfall ratio(S/R) in the Tibetan Plateau(TP) are analyzed using Sen's slope, the Mann–Kendall mutation test, Inverse Distance Weighting(IDW) and the Morlet wavelet. Total amount of precipitation and amount of rainfall generally show statistically significant increasing trends of 0.6 mm·a~(–1) and 1.3 mm·a~(–1), respectively, while amount of snowfall and S/R have significant decreasing trends of –0.6 mm·a~(–1) and –0.5% a~(–1), respectively. In most regions, due to significant increasing trends in total amount of precipitation and amount of rainfall, and significant decreasing trends in amount of snowfall, S/R shows a decreasing trend in the TP. Abrupt changes in total amount of precipitation, amount of rainfall, amount of snowfall and S/R are detected for 2005, 2004, 1996 and 1998, respectively. Total amount of precipitation, amount of rainfall, amount of snowfall and S/R are concentrated in cycles of approximately 5 years, 10 years, 16 years and 20 years, respectively. The trend magnitudes for total amount of precipitation and amount of rainfall all show decreasing-to-increasing trends with elevation, while amount of snowfall and S/R show decreasing trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号