首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal distribution of the design storm is an important input in hydrological models. This research aims to develop design storm profiles representative of arid and hyper-arid areas based on actual storm recordings. Two hundred thirty-six rainfall storms were collected from seventeen rainfall gauges that cover the coastal zone of Oman for the period from 1993 to 2007. Storms were classified into four categories according to their total durations. Design storm hyetographs were derived from raw rainfall records for all four categories using the Alternating Block Method (ABM) and were also computed by ABM applied on the Intensity-Duration-Frequency (IDF) curves. Both design storm profiles were compared and it was found that the ABM_IDF storm profiles were equivalent to the four ABM_Storms profiles from a practical point of view as they produce similar peak discharges. The storm profiles developed in the current research were also compared to the commonly used Soil Conservation Service (SCS) dimensionless distributions and the UK50 storm profiles. The results showed that the most conservative commonly used SCS type II and the UK50 summer profiles are not safe to be used in design purposes in arid and hyper arid regions, despite their wide utilization in many codes of practice in these regions. The study recommends using the newly developed dimensionless storm profiles derived from the actual records.  相似文献   

2.
中国降雨过程时程分型特征   总被引:17,自引:0,他引:17       下载免费PDF全文
为研究降雨过程雨强随历时的变化关系,利用中国14个气象站近40年逐分钟降雨资料,采用动态K均值聚类法并根据雨峰在降雨过程中出现的位置,将中国10256次降雨过程分为4种类型,即降雨前期集中型(Ⅰ型)、降雨中期集中型(Ⅱ型)、降雨后期集中型(Ⅲ型)和降雨均匀分布型(IV型)。结果表明:中国Ⅰ型降雨出现频次最高,占47.1%;Ⅱ型次之,占21.2%;Ⅲ型和IV型出现频次相当,分别占15.3%和16.4%。夏季Ⅰ型降雨发生频次占绝对优势,为夏季总降水过程的52.2%;冬季各类雨型发生频次相差不大。Ⅰ型多为短历时高强度降雨,而IV型多为长历时低强度降雨,Ⅱ型和Ⅲ型居中。历时越短时,Ⅰ型降雨的比重越大;随着降雨历时的增加,Ⅰ型降雨的比重明显下降,IV型降雨的比重增加。  相似文献   

3.
开展不同海绵设施在中国长三角气候模式下的水文效益研究, 对增强城市应对内涝能力从而提高城市对变化环境的适应性具有重要科学意义。选择国家首批海绵试点城市镇江海绵基地4种典型海绵设施作为研究案例, 采用径流系数、削减率、削峰率及洪峰流量等指标, 评估场次降雨与海绵设施出流相关性, 分析海绵设施在不同降水量级和降雨雨型下的水文性能, 以及运行时间对海绵设施水文效益的影响。结果表明: ①透水铺装类海绵设施的降雨—径流关系呈单一式; 而绿植类则表现为分段式, 即在场次降水量超过一定临界暴雨量之后关系线发生转折, 其中平均径流系数增加了8.4~38.5倍, 平均削峰率和削减率分别减少了50.4%和44.6%。②暴雨条件下不同海绵设施的产流能力和洪峰流量最大, 对径流总量消减能力及洪峰流量削减能力最弱, 且从暴雨到大雨变化规律比大雨到中雨变化规律更显著。③海绵设施的水文性能受到降雨雨型、平均降雨强度和最大单位降雨强度等因子多重复合影响。除雨水花园外, 其他海绵设施的径流系数对上述影响因子变化最为敏感, 洪峰流量次之, 削减率第3, 削峰率的敏感性显著低于前面三者。④车行透水砖运行1 a后, 其产流能力与洪峰流量分别显著增加1.7~2.1倍和1.9~2.5倍; 径流控制能力显著减弱, 其中消减能力降低了16%。  相似文献   

4.
This paper presents the derivation of the design storm hyetograph patterns for the Kingdom of Saudi Arabia based on real rainfall events from meteorological stations distributed throughout the Kingdom. Two thousand twenty-seven rainfall storms for a 20–28-year period were collected and analyzed covering 13 regions of the Kingdom. Four distinct dimensionless rainfall hyetograph patterns have been obtained over the Kingdom, while two patterns have been obtained for each individual region because of the lack of data for long-duration storms in individual regions. The resulting dimensionless rainfall patterns for each region can be used to develop storm hyetographs for any design duration, total rainfall depth and return period. It has been shown that the developed storm hyetographs have different features from other storm patterns that are commonly used in arid zones. The study recommends using these curves for the design of hydraulic structures in Kingdom of Saudi Arabia and regions alike.  相似文献   

5.
城市地区暴雨洪灾发生频繁,合理计算设计暴雨是解决城市洪涝的重要前提。采用随机暴雨移置方法(Stochastic Storm Transposition,SST),设定暴雨移置区并提取出暴雨目录,通过区域性概率重采样与暴雨空间变换相结合的方式进行降雨频率分析,估计本地化的极端暴雨频率。以上海地区为例,研究发现暴雨移置区内暴雨分布具有空间异质性,暴雨随机移置概率不均,计算得到的设计暴雨方案包含了降雨时空分布信息,在不同重现期下设计暴雨的时空结构存在变异性,说明传统方法中采用的简化雨型和均一化空间分布假设会增加设计暴雨的不确定性。  相似文献   

6.
城市地区暴雨洪灾发生频繁,合理计算设计暴雨是解决城市洪涝的重要前提。采用随机暴雨移置方法(Stochastic Storm Transposition,SST),设定暴雨移置区并提取出暴雨目录,通过区域性概率重采样与暴雨空间变换相结合的方式进行降雨频率分析,估计本地化的极端暴雨频率。以上海地区为例,研究发现暴雨移置区内暴雨分布具有空间异质性,暴雨随机移置概率不均,计算得到的设计暴雨方案包含了降雨时空分布信息,在不同重现期下设计暴雨的时空结构存在变异性,说明传统方法中采用的简化雨型和均一化空间分布假设会增加设计暴雨的不确定性。  相似文献   

7.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

8.
The soil conservation service curve number (SCS-CN) method is one of the most commonly used methods to compute the direct runoff from a rainfall event. Since the method was established, numerous researches were undertaken to improve the method through accurate estimation of its parameter and especially the curve number (CN). However, the essence of the SCS method, as an event-based Hortonian mechanism method, remained unchanged. The main assumption of the method related to the rainfall input is that the rainfall is continuous in time and uniform over the watershed. Mohammad and Adamowski (2015) paper apparently used the SCS method to estimate the annual runoff using the annual rainfall as one cumulative rainfall input value, which is a violation of the event-based principle of the method and of the assumption of the continuity of the rainfall event.To re-estimate the average annual runoff more realistically for the Asir region, Saudi Arabia, daily rainfall data from 14 rainfall stations are used for calculating the resulting runoff depths, on a daily event-by-event rainfall basis, throughout the whole simulation period. The resulting runoff depths are added for each year, and the total cumulative annual runoff values for each year are averaged to get the average annual runoff. The runoff values based on the previously mentioned procedure are an upper limit of the actual average annual runoff as the underlying SCS equations discard evaporation and similar long-term losses. Nevertheless, the average runoff values obtained in the discussion paper are an order of magnitude (at least five to tenfold) lower than the ones of the original paper. An equation is proposed to obtain a more realistic estimate of the average annual runoff, to be used with the average annual rainfall as an input, if the annual value is the only available rainfall information.  相似文献   

9.
In the past few decades, rapid urbanization has occurred in many regions of the Kingdom of Saudi Arabia due to increasing population and urban development. Additionally, the effects of global warming on rainfall characteristics have been observed. This rapid change in urbanization and climate change has cause significant changes in the nature of land surfaces and rainfall patterns, which affect the runoff process and the amount of surface runoff during floods. This study investigated the effect of urbanization and rainfall intensity for Hafr Al-Batin watershed located in Saudi Arabia. For this purpose, a hydrologic model, HEC-HMS, was adopted to simulate the flow of different rainfall intesities and urbanization levels. Simulated results showed that for a 100-year storm, a 24-h duration, and an urbanization level of 80%, the peak flow was 213% higher than the estimated current peak and the runoff volume was 112% higher than the current runoff volume. These results show a strong linear correlation between the level of urbanization and both peak discharge and runoff volume. Furthermore, the results indicate that for short return periods, the peak flow is more sensitive to the level of urbanization compared to long periods.  相似文献   

10.
设计暴雨雨型对城市内涝影响数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
为分析设计暴雨雨型对城市内涝的影响,应用耦合了水文和水动力过程的数值模型,以陕西省西咸新区为研究区域,对不同重现期及峰值比例设计暴雨条件下的内涝过程进行模拟,并对内涝积水总量、不同积水深度内涝面积等量值进行对比分析。结果表明:设计暴雨重现期短于20年时,峰值比例较小的设计暴雨内涝积水总量较大,而重现期长于20年时,规律相反;除2年一遇设计暴雨外,峰值比例较大的设计暴雨致涝总面积较大,但其中影响严重的Ⅳ级致涝面积较小;设计暴雨峰值比例越小,重现期越长,积水总量峰值时刻相对于暴雨峰值时刻的迟滞时间越长。揭示了暴雨雨型与内涝积水程度的量化规律,对更合理地开展城市雨洪管理工作具有指导意义。  相似文献   

11.
 Temporal distributions of the isotopic composition in arid rain storms and in the associated runoff were investigated in a small arid rocky basin in Israel. Customized rain and runoff samplers provided sequential water samples hermetically sealed in high-density PVC bags. In several storms where the runoff was isotopically depleted, compared with the rainfall, the difference could not be explained by fractionation effects occurring during overland flow. A water-balance study relating the runoff discharge to rainfall over a rocky watershed showed that the entire discharge is produced by a very small segment (1–2 mm) of the rain storm. The major objective, therefore, was to provide quantitative relations between segments of rainfall (rain showers and rain spells) and runoff. The time distribution of the composition of stable isotopes (oxygen and hydrogen) was used to quantify the correlation between the rain spell's amount and the consequent runoff. The aim of this work was to (a) utilize the dynamic variations in the isotopic composition in rainfall and runoff and model the magnitude of surface-storage capacity associated with runoff processes of overland flow, and (b) characterize the isotopic composition of the percolating water with respect to the isotopic distribution in rainfall and runoff events. The conceptual model postulates an isotopic mixing of overland flow with water within the depression storage. A transport model was then formulated in order to estimate the physical watershed parameters that control the development of overland flow from a certain rainfall period. Part I (this paper) presents the results and the assessment of the relative depression storage obtained from oxygen-18 and deuterium analyses that lead to the physical and mathematical formulation of a double-component model of kinematic-wave flow and transport, which is presented in Part II (accompanying paper). Received, February 1997 · Revised, September 1997 · Accepted, September 1997  相似文献   

12.
The goal of this work is to assess the effect of utilizing different types of tipping bucket rain gauges in investigating rainfall characteristics. A dual tipping bucket (TB) rain gauge station is installed in the upper catchment of Numan basin in Saudi Arabia. The main difference between the two gauges is that the Hydrological Services (HS) gauge is equipped with a siphon tube which reduces undercatchment particularly during heavy rainfall. Records of both gauges for the period 2006 to 2013 are collected, analyzed, and compared, focusing on the characteristics of rainfall events as well as rainfall temporal variability. The HS gauge recorded higher values of total rainfall depth compared to the Texas Electronics (TEMM) gauge. For the individual storms as well as the 5-min rainfall, HS gauge also reported higher mean rainfall depths. Regarding temporal characteristics of reported rainfall, no significant variations are observed between the values of storm duration of the two gauges. The TEMM gauge has the advantage of recoding more storms with depth less than 1 mm. The current study suggests the use of a corrective factor for rainfall record of the TEMM gauge.  相似文献   

13.
A unique historical data set describing the 142 storms each producing losses in excess of $100 million in the United States during the 1950–89 period were analyzed to describe their temporal characteristics. The storms caused $66.2 billion in losses (in 1991 values), 76% of the nation's insured storm losses in this period. These extreme storm catastrophes (SCs) were most prevalent in the south, southeast, northeast, and central U.S., with few in and west of the Rocky Mountains. Storm incidences were high in the 1950s, low in the 1960s-early 1970s, and increased in the 1980s. Losses due to SCs peaked in the 1950s, again in the late 1960s, with a lesser peak after 1985. The areal extent of storm losses peaked after 1975 and was least in the 1960s. The temporal variations of the three storm measures (incidence, losses, and extent) did not agree except when they all peaked in the 1950s. Regionally-derived time distributions of SCs showed a marked north-south differences in the United States with a U-shaped 40-year distribution in the northern half of the nation, and a relatively flat trend until a peak in the 1980s in the southern regions. The temporal distributions of hurricane-caused catastrophes differed regionally with occurrences in the prime areas, the southern, southeastern, and northeastern U.S., each quite different. Temporal distributions of thunderstorm and winter storm catastrophes were regionally more uniform.  相似文献   

14.
易彬  陈璐 《水科学进展》2022,33(6):944-954
针对现有分布式单位线汇流理论未考虑土壤含水量变化引起的时变汇流路径问题, 提出动态汇流路径新概念, 推求同时考虑降雨强度和土壤含水量时空分布的坡面流速计算公式, 引入地形指数刻画流域蓄水能力空间分布, 从而获得栅格尺度流域流速分布场, 进一步建立不同蓄满状态下流域动态汇流路径集合, 最终实现考虑动态汇流路径的时变分布式单位线推求。以龙虎圩和东石流域为实例, 通过SCS模型计算产流量, 采用本文所提方法进行汇流计算, 引入涵盖低流量误差、高流量误差及洪量误差的多目标优化方法率定参数, 2个典型流域28场洪水预报结果表明, 洪峰流量相对误差在±15%内, 峰现时间误差在±6 h之间, 纳什效率系数平均值超过0.8, 与现有方法相比, 所提方法能更加准确地反映汇流时间分布场, 提高了洪水预报精度。  相似文献   

15.
This paper investigates the effect of rainstorm movement on the peak discharge response (PDR) of drainage networks by comparing it with the corresponding equivalent stationary and uniform rainfall. A synthetic circular watershed is introduced to avoid biases from interaction between catchment geometry and storm orientation. The drainage network of the watershed is simulated by the Gibbsian model to examine the effect of network configuration on the peak response depending on the storm kinematics. This study utilizes two types of the equivalent stationary storm (ESS): the average rainfall intensity over the entire catchment (ESSAV) and the point stationary rainfall intensity (ESSQ) to evaluate the effect of moving rainstorms in terms of the PDR. The results show that there exists an interval in which the same rainfall duration produces higher peak responses for moving storms compared with ESSQ. The augmentation of the peak response by moving rainstorm is dependent on the relative rainstorm speed, size, and direction as well as drainage network configuration of the catchment; especially, the results show that a less efficient network tends to mitigate the effect of rainstorm movement on peak response. In contrast, a more efficient network is more sensitive to storm kinematics and the peak response increases compared with ESS. Therefore, the results in this study imply a potential improvement in urban drainage networks in terms of efficiency as well as safety to moving rainstorms. Also, this study suggests the range of variation in peak flows due to storm kinematics compared with the ESS, which can be a reference to the current design practices.  相似文献   

16.
城市设计暴雨雨型研究   总被引:16,自引:1,他引:15       下载免费PDF全文
采用模糊模式识别方法对我国四个雨量站的雨型进行分类和统计,获得了短历时暴雨雨型的分布特性;经过模拟分析和比较,找出了一种较好地满足城市排水设计要求的设计雨型。  相似文献   

17.
Investigation of changes in rainfall and runoff patterns in various regions and determining their relationship in the sense of hydrology and climatology are of great importance, considering those patterns efficiently reveal the human and natural factors in this variability. One of the mathematical methods to recognise and model these fluctuations is Wavelet Analysis. This is a spectral method used in multivariate analysis and also tracing fluctuations in temporal series. In this study, continuous wavelet transformation is used to identify temporal changes in rainfall–runoff patterns. The hydrological and rain gauge data were collected from in situ measurements of Kermanshah province located in the western border of Iran. Precipitation anomalies were reconsidered in a number of stations, including Kermanshah, for a period of 55 years (1955–2010) and discharge of Gamasiab River in Polchehr station, discharge of Khoram Rood River in Aran-Gharb station and discharge of Gharasoo River in Polekohne station. In addition, anomalies of the climatic teleconnections were studied to emphasise the climatological effects on the runoff pattern in the region. The role of natural and anthropogenic effects (land use changes) has been distinguished and identified, using the comparison of the teleconnections and hydrological data. The results achieved from three stations show that there was an approximate correlation between rainfall, runoff and teleconnections until the year 1995; however, after 1995, a great difference appeared among them, specifically for the Aran-Gharb station (Khoram Rood River). The post-1995 slope of cumulative standardised anomaly is much steeper in the case of runoff compared to rainfall. As there were no significant climate changes in the region, it could be concluded that the runoff decrease is not caused by climate changes, but by anthropogenic effects, human interventions and extra water usage from the surface and underground water resources for agriculture and economic purposes.  相似文献   

18.
集水区降雨径流晌应的环境同位素实验研究   总被引:15,自引:6,他引:15       下载免费PDF全文
顾慰祖 《水科学进展》1992,3(4):246-254
利用环境同位素氚和氧-18对实验集水区进行降雨和径流响应的研究表明:(1)地面径流必源于本次降雨的概念不确,其中往往有非本次降雨的水量.经对1986年~1989年各次降雨估算表明,非本次降雨贡献最高可达50.5%.(2)非饱和带壤中流和饱和带地下水径流中必有非本次降雨的水量,并与地面径流一样,在次降雨径流过程中有时程变化.(3)对不同径流组成的流量过程,非本次降雨所占的比重不同.通过分析,可知降雨径流相关关系中的一一对应假定不确切,认为:传统的降雨径流经验关系和单位线概念需重新考虑;传统的过程线经验划分方法和现行同位素划分方法的有关基本假定不完全符合实际.  相似文献   

19.
Winter storms are a major weather problem in the United States and their losses have been rapidly increasing. A total of 202 catastrophic winter storms involving ice storms, blizzards, and snowstorms, each causing >$5 million in damages, occurred during 1949–2003, and their losses totaled $35.2 billion (2003 dollars). Catastrophic winter storms occurred in most parts of the contiguous United States, but were concentrated in the eastern half of the nation where 88% of all storm losses occurred. They were most frequent in the Northeast climate district (95 storms), and were least frequent in the West district (14 catastrophic storms). The annual average number of storms is 3.7 with a 1-year high of nine storms, and one year had no storms. Temporal distributions of storms and their losses exhibited considerable spatial variability across the nation. For example, when storms were very frequent in the Northeast, they were infrequent elsewhere, a result of spatial differences in storm-producing weather conditions over time. The time distribution of the nation’s 202 storms during 1949–2003 had a sizable downward trend, whereas the nation’s storm losses had a major upward trend for the 55-year period. This increase over time in losses, given the decrease in storm incidences, was a result of significant temporal increases in storm sizes and storm intensities. Increases in storm intensities were small in the northern sections of the nation, but doubled across the southern two-thirds of the nation, reflecting a climatic shift in conditions producing intense winter storms.  相似文献   

20.
The currently adopted rainfall-based design flood estimation method in Australia, known as design event approach (DEA), has a flaw that is widely criticized by the hydrologists. The DEA is based on the assumption that a rainfall depth of a certain frequency can be transformed to a flood peak of the same frequency by adopting the ‘representative values’ of other model input variables, such as temporal patterns and losses. To overcome the limitation associated with the DEA, this paper develops stochastic model inputs to apply Monte Carlo simulation technique (MCST) for design flood estimation. This uses data from 86 pluviograph stations and six catchments from eastern New South Wales (NSW), Australia, to regionalize the distributions of various input variables (e.g., rainfall duration, inter-event duration, intensity and temporal patterns and loss and routing characteristics) to simulate thousands of flood hydrographs using a nonlinear runoff routing model. The regionalized stochastic inputs are then applied with the MCST to two catchments in eastern NSW. The results indicate that the developed MCST provide more accurate flood quantile estimates than the DEA for the two test catchments. The particular advantage of the new MCST and stochastic design input variables is that it reduces the subjectivity in the selection of model input values in flood modeling. The developed MCST can be adapted to other parts of Australia and other countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号