首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
北京平原目前尚未建立系统的地质剖面。1867年庞培莱将北京西山分为3大系,1871年李希霍芬提出震旦系、划分12层。1922年葛利普将震旦系限定在前寒武系,1923年田奇镌将南口剖面划分为7个岩组,1934年高振西将震旦系3分(南口群、蓟县群、青白口群)。1976年乔秀夫3分青白口群(下马岭组、龙山组和景儿峪组),1980年汪长庆等将十三陵剖面分为4系12组,1991版《北京市区域地质志》将十三陵剖面分为3系12组。本文初步建立平原区地层表,详细描述太古宙结晶基底和元古宙地层剖面,在京南大兴区的榆垡(兴热-1井)和安定(兴热-2井)发现太古宙片麻岩,在京热-70井、京热-59井、京热-71井和京热-75井编录蓟县纪地层,利用亦庄小学钻孔厘定待建系下马岭组、青白口纪龙山组和景儿峪组。  相似文献   

2.
震旦系质疑及有关上元古界地层问题   总被引:2,自引:1,他引:2       下载免费PDF全文
1975年全国震旦系讨论会,根据近年来地层、古生物和同位素年龄的研究成果,认为南方震旦系和北方震旦系是上、下关系;并暂定南方震旦系(三峡层型剖面)称震旦系,北方震旦系(蓟县层型剖面)另建长城系、蓟县系、青白口系,与上述震旦系合称震旦亚界,归入上元古界。1976年出版的中华人民共和国地质图和亚洲地质图的元古代地层图例,即根据此方案编制的。这个方案虽是过渡性的,它对确定我国震旦亚界的地层层序,推动前寒武纪地层的深入研究,还是起了一定的积极作用。 不容讳言,对上述方案,有许多地质工作者曾表示不便反对,也不敢赞同。希望多做些工作,以求在实践中逐步统一认识,解决存在的问题。  相似文献   

3.
中国南方震旦纪地层问题   总被引:3,自引:0,他引:3       下载免费PDF全文
刘鴻允  沙庆安 《地质科学》1965,6(4):313-324
关于南方震旦系的下界,主要有两种意见:(1)以澄江组或莲沱群的底板为下界;(2)往下移到包括昆阳群、板溪群及其相当岩系。主张后一意见主要根据葛利普“寒武系之下的不变质或只轻变质的沉积岩系属震旦系”的概念,及“滹沱页岩群”和“东峪灰岩”等实例,认为昆阳群和板溪群等变质并不很深,而在岩性上有其相似之点,故可以归入震旦系。经过多年来的研讨,大多数趋向于将昆阳群及其相当岩系归属于前震旦系。但问题并不就此解决。  相似文献   

4.
周中毅 《地质科学》1959,2(1):28-29
我们在太行山二十四个县进行了初步找磷工作,得到了一些认识,现在将它写出,供同志们参考。几乎各个时代的地层均含有磷矿,而以下震旦系中部、下寒武系及二迭系上部(石盒子系上部)为好。各含磷层的情况。大体如下: 1.前震旦系在夹有大理岩及钙质页岩的绿色页岩及角闪片麻岩中含有磷矿。此外在大理岩及钙质页岩中也含有一些磷矿。含磷厚度约达三十米,但它的品位均很低,分布则较广。 2.震旦系在山西平顺到昔阳一带的震旦纪地层中几乎全为白色及紫红色砂岩,在其中部的灰黑色、灰绿色泥质砂岩中含磷较富。  相似文献   

5.
<正> 国内外学者对崆岭群的研究已有悠久的历史。早在1907年,Blackwelder认为鄂西崆岭层(群)相当泰山式(群)的基底杂岩。李四光等于1924年在长江峡东地区工作后,把峡东前震旦系变质岩称为“三斗坪系”(分成崆岭片岩、美人沱片麻岩和黄陵花岗岩)。1958年,北京地质学院在黄陵背斜进行一比二十万区测工作,将该区变质岩系称为崆岭群,并进行了地层划分。1959年,全国地质会议根据地质部水文工程地质队在该区侵入岩——英闪岩的耳个同位素年龄样,推测岩浆岩与片岩发生混合作用的时代为800—900  相似文献   

6.
新疆北天山地区震旦纪冰成岩的初步研究   总被引:1,自引:0,他引:1  
新疆北天山地区震旦系是近几年(1975—1980)由新疆地质局地质研究所发现和确定,并命名为“凯拉克提群”。作者参与了本区震旦系的野外调研工作,在对冰成岩进行初步研究的基础上撰写本文,由于资料所限,不妥和错误之处,请批评指正。董玉杰帮助收集了部分资料,本文经高振家审阅,特表感谢。  相似文献   

7.
合肥盆地位于安徽省中部,面积约21000平方公里,是安徽省最大的中、新生代沉积盆地。盆地内以白垩系最为发育,白垩系分为朱巷组和响导铺组。笔者系统地研究了朱巷组的孢粉化石。本文以孢粉组合讨论其地质时代古植被与古气候。  相似文献   

8.
武夷山南段前寒武纪地层分布较广。从下至上分为楼子坝群、丁屋岭组、南岩组和黄连组。过去因缺乏可靠的微古植物化石证据和同位素地质年龄资料,对其时代归属分歧颇大。为此,作者对该区的前寒武系进行了系统的微古植物取样、分析,参考最近的Nd同位素模式年龄资料,认为:楼子坝群为前震旦系,大致相当于蓟县系与青白口系;丁屋岭组为下震旦统;南岩组和黄连组为上震旦统;江西东南部的"下寒武统炭质板岩"应归入老虎塘组,属上震旦统。  相似文献   

9.
刘鴻允  沙庆安 《地质科学》1965,6(4):325-329
震旦系在地质年表(地层柱)中的位置,自葛利普将其属于古生界作为第一个系之后,李四光首先明确地表示了他的不同意见。李氏认为:“在缺乏古生代化石的现实情况下,将震旦系归属于古生界,显然是不妥当的。”从此,震旦系属于古生界还是属于元古界就成悬案,各家有不同的见解。 1959年全国地层会议曾对震旦系隶属问题展开讨论,终沒有得到一致的认识。近几年来,国內外有关这一问题的讨论仍在不断地进行。我们一向是主张属于元古界的;这里愿意联系中国南方情况,再次较全面地申述这一观点。  相似文献   

10.
甘肃龙首山区及马衔山区前震旦纪地层简介   总被引:1,自引:0,他引:1       下载免费PDF全文
甘肃省前震旦系主要分布于祁连山及阿拉善区,可分南北两带。北带分布于龙首山及北大山一带,前人称“阿拉善群”,1967年,我队在区域地质调查时将其改为龙首山群,向西出露在三危山至东巴兔山一带的前震旦系称“敦煌群”;南带分布于阿尔金山及中祁连山一带,向东出露在兰州马衔山一带的前震旦系称“马衔山群”。此外,在北山区的洪格尔吉山及雅布赖西山等地尚有零星出露。  相似文献   

11.
西藏南部拉孜-江孜一带的白垩系   总被引:21,自引:0,他引:21       下载免费PDF全文
白垩纪,在西藏南部地质历史上,是一个重要的阶段,发生了剧烈的火山喷发、岩浆侵入以及褶皱运动。沿雅鲁藏布江一线,以大规模的超基性岩带为标志,又是一条重要的地质界线,被称为“断块缝合线”或“板块缝合线”,近年来受到广泛的重视。在超基性岩带两侧,拉孜-江孜一带,最广泛发育的是白垩纪地层,厚度巨大,岩相极其复杂,而且含有可采煤层。因此,对这一带白垩系的研究,具有重要的经济价值和理论意义。  相似文献   

12.
华南加里东期金矿床分布广泛,既可产在华南加里东褶皱带内,也可发育在毗邻的江南隆起上。其共同特征是矿床产在加里东期构造变形带或变质带中,受深大断裂带及其分支构造所控制,成矿物质主要来自赋矿围岩。产在隆起上的矿床赋矿围岩时代较老,均为元古宙变质细碎悄岩类;矿物及元素组合比较简单,常见单金型。产于褶皱带中者其围岩除元古宙-寒武纪变质细碎屑岩外,还有火山岩、侵入岩及沉积岩,时代为元古宙--志留纪;矿物及元  相似文献   

13.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

14.
祁连山地质构造特征   总被引:11,自引:0,他引:11       下载免费PDF全文
向鼎璞 《地质科学》1982,(4):364-370
祁连山呈近北西向展布,长约1000余公里,宽100-250公里。本文据甘肃、青海等省的区调、科研资料及成果综合整理。  相似文献   

15.
GEOCHEMISTRY OF VOLCANIC ROCKS IN WESTERN PART OF JINSHAJIANG STRUCTURAL BELT AND ITS TECTONIC SETTING  相似文献   

16.
新疆阿尔泰山南缘的构造与矿产问题   总被引:5,自引:1,他引:5  
新疆阿尔泰的构造位置处于西伯利亚与哈萨克斯坦两大板块接触带的北部边缘,火山喷发与侵入活动强烈,推覆构造发育。山区包括喀纳斯-青河一带的地背斜褶皱带和诺尔特地向斜褶皱带。阿尔泰山南缘主要包括克兰地向斜,与哈萨克斯坦广义的矿区阿尔泰相当,其南以额尔齐斯-玛因鄂博断裂为界,南、北构造性质不同。阿尔泰山区与伟晶岩有关的稀有分散元素矿产多。而阿尔泰山南缘与火山-侵入活动有关的矿产多,如铜镍、多金属和金矿。由于强烈的由北向南的推覆改造,很可能有相当一部分矿产被推覆改造而掩埋于深部,因此在阿尔泰山南缘寻找地下隐伏矿床十分重要。  相似文献   

17.
青海拉鸡山:一个多阶段抬升的构造窗   总被引:18,自引:2,他引:16       下载免费PDF全文
王二七  张旗 《地质科学》2000,35(4):493-500
拉鸡山断裂带位于祁连山褶皱带内,呈北西-南东向延伸.后者构成青藏高原的东北边缘,由三个主要构造单元组成:北部是一条早古生代的板块缝合带,中部是一个元古代的结晶地块,南部由一套晚古生代到三叠纪的被动大陆边缘沉积物组成.对拉鸡山及其邻区的构造研究结果表明,祁连山褶皱带在古生代加里东期发生过大规模的缩短,北祁连的早古生代蛇绿岩和岛弧火山岩沿祁连山中央冲断层向南,陆内俯冲到中祁连元古界变质杂岩之下.由于发生在晚古生代和晚中生代的陆内变形,位于中祁连之下的北祁连的蛇绿岩和岛弧火山岩发生褶皱,并被抬升到地表.到新生代,由于印度板块和欧亚大陆之间的碰撞和陆内汇聚作用,拉鸡山断裂带再次活动,这些下古生界蛇绿岩和岛弧火山岩通过冲断作用快速抬升,将中祁连地块一分为二.因此,拉鸡山是一个抬升的构造窗,不是一个中祁连结晶地块中的早古生代大陆裂谷.  相似文献   

18.
中国西藏南部珠穆朗玛峰地区构造特征   总被引:24,自引:0,他引:24       下载免费PDF全文
中华人民共和国成立以来,在中国共产党的领导下,曾几次派遣科学考察队到西藏地区进行考察。在无产阶级文化大革命期间,中国科学院组织了一支科学考察队,于1966-1968年在东起亚东西到吉隆我国喜马拉雅地区大约50,000平方公里的范围内进行了考察。在地质方面,根据地层发育、变质程度和构造变形的不同考察地区可以分成南、北两条东西向构造带。南带的地层层序非常完全,而北带则只有石炭-二迭纪和中生代地层出露。在南带发现了奥陶纪、志留纪和泥盆纪化石,对中生代和新生代沉积地层进行了较详细的划分,从而初步建立了珠穆朗玛峰(以下简称珠峰)地区比较完整的地层系统。  相似文献   

19.
龙门山断裂带印支期左旋走滑运动及其大地构造成因   总被引:60,自引:6,他引:60  
位于青藏高原东缘的龙门山构造呈北东—南西向将松潘—甘孜褶皱带和华南地块分割开。前者主要是由一套巨厚的三叠纪复理石沉积组成 ,分布在古特提斯海的东缘。后者由前寒武纪基底和上覆的古生代和中生代沉积盖层组成。位于汶川—茂汶断裂以东的前龙门山存在一系列倾向北西的逆掩断层 ,它们将许多由元古宙和古生代岩层组成的断片向南东置于四川盆地的中生代红层之上 ,构成典型的薄皮构造。许多研究由此断定松潘—甘孜褶皱带和四川盆地之间在中生代发生过大规模的北西—南东向挤压。然而 ,汶川—茂汶断裂西侧的松潘—甘孜褶皱带内部的挤压构造线大多是垂直于而不是平形于龙门山断裂带 ,这表明当时的挤压应力不是北西—南东向而是北东—南西向。近年来在龙门山构造带内发现 ,在三叠纪时龙门山断裂带在发生推覆的同时还经历过大规模的北东—南西向的左旋走滑运动 ,协调走滑运动的主要构造为汶川—茂汶断裂。走滑运动的成因与松潘—甘孜褶皱带北东—南西向缩短有关。汶川—茂汶断裂的左旋走滑在龙门山的北东端被古特提斯海沿勉略俯冲带的消减和发生在大巴山的古生代 /中生代岩层的褶皱和冲断作用所吸收 ,在龙门山的南西端被古特提斯海沿甘孜—理塘俯冲带的消减和松潘—甘孜三叠纪复理石的褶皱和冲断作用所吸?  相似文献   

20.
Caledonian gold deposits are widely distributed in South China.They are developed in both South China Caledonian fold belt and adjacent Proterozoic Jiangnan uplift.The host rocks are Proterozoic metamorphosed microclastic rocks in the Jiangnan uplift and Proterozoic and Cambrian strata,as well as Chengjiang and Caledonian igneous bodies in the South China flod belt.The distince differences between the Caledonian and the most developed Yenshanian glod deposits in South China are reflected in age and host-rock type,relations to Yenshanian magmatic activities,element association,mineral assemblage and glod deposit type.The studies have proven hat the Caledonian epoch is a principal metallogenic period of gold deposits in South China.This conclusion is of very important enlightening significance in exploration of Caledonian gold deposits in South China as well as in other Caledonian fold belts and adjacent uplifts in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号