首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To simulate the wave-induced response of coupled pore fluids and a solid skeleton in shallow water, a set of solutions with different formulations (fully dynamic, partly dynamic, and quasi-static) corresponding to each soil behavior assumption is presented. To deal with Jacobian elliptic functions involved in the cnoidal theory, a Fourier series approximation is adopted for expanding the boundary conditions on the seabed surface. The parametric study indicates the significant effect of nonlinearity for shallow water wave, which also enhances the effect of soil characteristics. The investigation of the applicability of reduced formulations reveals the necessity of a partly or even fully dynamic formulation for the wave-induced seabed response problem in shallow water, especially for thickened seabed. The analysis of liquefaction in the seabed indicates that the maximum depth of liquefaction is shallower, and the width of liquefaction is broader under cnoidal wave loading. The present analytical model can provide more reasonable result for the wave-induced seabed response in the range of shallow water wave.  相似文献   

2.
Vertical variations of wave-induced radiation stress tensor   总被引:3,自引:0,他引:3  
INTRODUcrIONThe concept of radiation stress was deve1oPed by tonguet--Higgins and Stewart (1964 ),who intreduced the definition of radiation stress as the excess mornentum due to the presence ofwaves, on the basis of time-averaged laws of Newtonian fluid mechanics and the assmption ofa unifOrm velocity distribution over depth. Subequently, the theory has been applied success-fully in the investigation of phenomena such as wave set-up and set--down (Bowen et al.,l968), longshore currents …  相似文献   

3.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

4.
S.C. Chang  J.G. Lin  L.K. Chien  Y.F. Chiu   《Ocean Engineering》2007,34(17-18):2311-2329
In this study, the dynamic stresses within the seabed induced by non-linear progressive waves were explored through a series of hydraulic model tests on a movable bed within a wave flume. By comparing Stokes’ 2nd-order wave theory with the theory of wave-induced dynamic stresses within the seabed as proposed by Yamamoto et al. [1978. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 87 (1), 193–206.] and Hsu and Jeng [1994. Wane-induced soil response in an unsaturated anisotropic seabed of finite thickness. International Journal for Numerical and Analytical Methods in Geomechanics 18, 785–807], the experimental results show that the pressure on the seabed surface, the pore water pressure within the seabed as well as the vertical and the horizontal stresses are all smaller than their theoretical values. If we were to obtain the characteristics of seabed soil, the analytical solution of Hsu and Jeng [1994. Wane-induced soil response in an unsaturated anisotropic seabed of finite thickness. International Journal for Numerical and Analytical Methods in Geomechanics 18, 785–807] might agree to the simulation of the wave-induced effective stresses and shear stress in the sandy seabed. A different phase shift exists among all the three soil stresses. Their influences on the three dynamic stresses within seabed soil are important for seabed stability, and can be used in the verification of numerical models. In the whole, the non-linear progressive waves and the naturally deposited seabed are found to have a strong interaction, and the behavior of the induced dynamic stresses within the seabed is very complicated, and should be investigated integrally.  相似文献   

5.
Most previous investigations for the wave-induced soil response have only considered the quasi-static soil behavior under linear wave loading. However, it is expected that the dynamic soil behavior and wave non-linearity will play an important role in the evaluation of wave-induced seabed response. In this paper, we include dynamic soil behavior and wave non-linearity into new analytical models. Based on the analytical solution derived, the effects of wave non-linearity on the wave-induced seabed response with dynamic soil behavior are examined. Numerical results demonstrate the significant effects of wave non-linearity and dynamic soil behavior on the wave-induced effective stresses. The applicable range of dynamic and quasi-static approximations is also clarified for engineering practice.  相似文献   

6.
In this study, a new analytical solution for the wave-induced seabed response in a multi-layered poro-elastic seabed is developed. The seabed is treated as a multi-layered porous medium and characterized by Biot’s theory. The displacements of the solid skeleton and the pore pressure are expressed in terms of two scalar potentials and one vector. Then, the Biot’s dynamic equation can be solved using Fourier transformation and reducing to Helmholtz equations. To obtain the general solutions for the multi-layered poro-elastic seabed in the frequency-wave-number domain, the transmission and reflection matrices (TRM) method is used to form the equivalent stiffness. Using the boundary conditions and continuous conditions, the frequency-wave-number domain solutions are obtained. Finally, the time-space domain solutions for the multi-layered poro-elastic seabed are obtained by means of the inverse Fourier transformation with respect to the horizontal coordinate. Based on the new solution, a parametric study is carried out to examine the effects of soil characteristics (number of layers, permeability and shear modulus) and wave characteristics (water depth and wave steepness) on seabed responses. The results indicate that the seabed response is affected significantly by permeability, shear modulus and relative water depth.  相似文献   

7.
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-lineafity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.  相似文献   

8.
真实的海洋波浪是随机的,而前人对海床的动态响应分析大都是选用线性波或者Stokes波理论,对海床的模拟大都采用Biot拟静力模型,忽略了流体速度及土体位移加速度的影响。联合使用Longuet-Higgins随机波模型(采用Jonswap谱)以及动力u-p形式的海床响应计算模型,使用COMSOL Multiphysics多场耦合软件的PDE模块输入方程进行有限元计算,得到随机波作用下整体海床动态响应结果。将随机波结果与一阶Stokes波和椭圆余弦波结果进行对比,并对渗透系数和饱和度进行参数分析,研究表明渗透系数和饱和度对于随机波作用下海床动态响应影响显著。  相似文献   

9.
T. C. Lee  C. P. Tsai  D. S. Jeng   《Ocean Engineering》2002,29(12):1577-1601
In the past few decades, considerable efforts have been devoted to the phenomenon of wave-seabed interaction. However, conventional investigations for determining wave characteristics have been focused on the wave nonlinearity. On the other hand, most previous works have been only concerned with the seabed response under the wave pressure, which was obtained from the assumption of a rigid seabed. In this paper, the inertia forces and employing a complex wave number are considered in the whole problem. Based on Biot’s poro-elastic theory, the problem of wave-seabed interaction is first treated analytically for a homogeneous bed of finite thickness and a new wave dispersion relationship is also obtained, in which the soil characteristics are included. The numerical results indicate that the effects of soil parameters significantly affect the wave characteristics (such as the damping of water wave, wave length and wave pressure). Furthermore, the effects of inertia forces on the wave-induced seabed response cannot always be ignored under certain combination of wave and soil conditions.  相似文献   

10.
Wave-induced seabed instability in front of a breakwater   总被引:2,自引:0,他引:2  
D.S. Jeng 《Ocean Engineering》1997,24(10):887-917
The wave-induced soil response in a porous seabed has become an important factor for the stability of offshore facilities, because many marine structures may have failed due to seabed instability and concomitant subsidence. An analytical solution is presented for the wave-induced soil response under the action of a three-dimensional wave system. Based on this general solution, the mechanism of seabed instability is then investigated. The general solutions for pore pressure and effective stresses are readily reducible to two dimensions for progressive waves, and are compared to theoretical and experimental work available. Some dominant factors affecting the wave-induced seabed instability are discussed; including permeability, seabed thickness and degree of saturation.  相似文献   

11.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

12.
In this study, a mathematical integrated model is developed to investigate the wave-induced sloping seabed response in the vicinity of breakwater. In the present model, the wave model is based on the Volume-Averaged/Reynolds Averaged Navier–Stokes (VARANS) equations, while Biot's consolidation equation is used to govern the soil model. The influence of turbulence fluctuations on the mean flow with respect to the complicated interaction between wave, sloping seabed and breakwater are obtained by solving the Volume-Averaged k  ϵ model. Unlike previous investigations, the phase-resolved absolute shear stress is used as the source of accumulation of residual pore pressure, which can link the oscillatory and residual mechanisms simultaneously. Based on the proposed model, parametric studies regarding the effects of wave and soil characteristics as well as bed slopes on the wave-induced soil response in the vicinity of breakwater are investigated. Numerical results indicate that wave-induced seabed instability is more likely to occur in a steep slope in the case of soil with low relative density and low permeability under large wave loadings. It is also found that, the permeability of breakwater significantly affect the potential for liquefaction, especially in the region below the breakwater.  相似文献   

13.
波浪引起的海床不稳定性是海洋工程中需要考虑的重要问题。在对现有波致海床滑动稳定性计算方法进行分析的基础上,提出了一种波致海床滑动稳定性计算的全应力状态法,将其与现有计算方法进行了对比分析,并进一步研究了波致砂土海床和软土海床的滑动失稳特征。结果分析表明,全应力状态法在波致海床滑动稳定性分析中具有较好的适用性。对于砂土海床,其滑动稳定性受饱和度的影响较大,且当海床计算厚度约为0.2倍波长时对应的滑动深度最大。波浪作用下坡度不超过2°的均质软土海床,其最危险滑动面的位置仅与波长有关,其滑动深度约为0.21倍波长,滑动面半弦长约为0.33倍波长;海床表面的波压力数值只影响其安全系数的大小,而不影响其滑动深度。  相似文献   

14.
Research on the response of random wave on offshore structures has received great deal of attention of many researchers and engineers in the design of marine structures. Most previous investigations have been limited to the regular waves. In this paper, based on Longuet–Higgins random wave theory and finite element method, a numerical model for random wave-induced seabed response is established. The seabed is treated as poroelastic medium and characterized by Biot’s partly dynamic equations (u–p model). The JONSWAP spectrum is adopted in Longuet–Higgins model, which is based on the cumulative superposition of linear diffraction solution. Based on the numerical results, the effects of random wave on seabed response are investigated by comparing with the corresponding Stokes wave and cnoidal wave. Then, a parametric study is conducted to examine the effect of wave and soil characteristic on the seabed.  相似文献   

15.
Abstract

In this paper, a 2D poro-elastoplastic model for wave-induced dynamic response in an anisotropic seabed is derived analytically. The seabed is treated as a porous medium and characterized by Biot’s consolidation equations. The soil plasticity and wave non-linearity are included in the model and both the pore fluid and the soil skeleton are assumed to be compressible. The nonlinear ocean waves are respectively considered as progressive and standing waves. The previous experimental data is used to validate the proposed model. Numerical results demonstrate that the influence of nonlinear wave components should not be ignored without committing substantial error. A significant difference between progressive and standing waves is also observed for the development of residual pore pressure, as well as the distribution of liquefied zone. A detailed parametric investigation reveals that the nonlinear wave-induced seabed response is also affected significantly by cross-anisotropic soil parameters.  相似文献   

16.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

17.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

18.
In this study, unlike most previous investigations for wave-induced soil response, a simple semi-analytical model for the random wave-induced soil response is established for an unsaturated seabed of finite thickness. Two different wave spectra, the B-M and JONSWAP spectra, are considered in the new model. The influence of random wave loading on the soil response is investigated by comparing with the corresponding representative regular wave results through a parametric study, which includes the effect of the degree of saturation, soil permeability, wave height, wave period and seabed thickness. The maximum liquefaction depth under the random waves is also examined. The difference on the soil response under the two random wave types, B-M and JONSWAP frequency spectra, is also discussed in the present work.  相似文献   

19.
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus.By employing integral transform and Frobenius methods,the transient and steady solutions for the wave-induced pore water pressure,effective stresses and displacements are analytically derived in detail.Verification is available through the reduction to the simple case of homogeneous seabed.The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.  相似文献   

20.
波浪作用下孔隙海床-管线动力相互作用分析   总被引:1,自引:0,他引:1  
波浪作用下海床中的孔隙水压力与有效应力是影响海底管线稳定性的主要因素。然而,在目前的海床响应分析中一般将管线假定为刚性,并不能合理地考虑海床与管线之间的相互作用效应,同时也没有考虑土体和管线加速度对海床动力响应的惯性影响,从而无法确定由此所引起的管线内应力。为此考虑管线的柔性,分别采用饱和孔隙介质的Biot动力固结理论和弹性动力学理论列出了海床与管线的控制方程,进而采用摩擦接触理论考虑海床与管线之间的相互作用效应,基于有限元方法建立了海床-管线相互作用的计算模型及其数值算法。通过变动参数对比计算讨论了管线几何尺寸、海床土性参数对波浪所引起的管线周围海床孔隙水压力和管线内应力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号