首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
The Alboran Sea constitutes a Neogene–Quaternary basin of the Betic–Rif Cordillera, which has been deformed since the Late Miocene during the collision between the Eurasian and African plates in the westernmost Mediterranean. NNE–SSW sinistral and WNW–ESE dextral conjugate fault sets forming a 75° angle surround a rigid basement spur of the African plate, and are the origin of most of the shallow seismicity of the central Alboran Sea. Northward, the faults decrease their transcurrent slip, becoming normal close to the tip point, while NNW–SSE normal and sparse ENE–WSW reverse to transcurrent faults are developed. The uplifting of the Alboran Ridge ENE–WSW antiform above a detachment level was favoured by the crustal layering. Despite the recent anticlockwise rotation of the Eurasian–African convergence trend in the westernmost Mediterranean, these recent deformations—consistent with indenter tectonics characterised by a N164°E trend of maximum compression—entail the highest seismic hazard of the Alboran Sea.  相似文献   

2.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   

3.
Based on new multi-channel seismic data, swath bathymetry, and sediment echosounder data we present a model for the interaction between strike-slip faulting and forearc basin evolution off north-western Sumatra between 2°N and 7°N. We examined seismic sequences and sea floor morphology of the Simeulue- and Aceh forearc basins and the adjacent outer arc high. We found that strike-slip faulting has controlled the forearc basin evolution since the Late Miocene. The Mentawai Fault Zone extends up to the north of Simeulue Island and was most probably connected farther northwards to the Sumatran Fault Zone until the end of the Miocene. Since then, this northern branch jumped westwards, initiating the West Andaman Fault in the Aceh area. The connection to the Mentawai Fault Zone is a left-hand step-over. In this transpressional setting the Tuba Ridge developed. We found a right-lateral strike-slip fault running from the conjunction of the West Andaman Fault and the Tuba Ridge in SSW-direction crossing the outer arc high. As a result, extrusion formed a marginal basin north of Simeulue Island which is tilted eastwards by uplift along a thrust fault in the west. The shift of strike-slip movement in the Aceh segment is accompanied by a relocation of the depocenter of the Aceh Basin to the northwest, forming one major Neogene unconformity. The Simeulue Basin bears two major Neogene unconformities, documenting that differences in subsidence evolution along the northern Sumatran margin are linked to both forearc-evolution related to subduction processes and to deformation along major strike-slip faults.  相似文献   

4.
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic–Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N–S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.  相似文献   

5.
Understanding the roles of Cenozoic strike-slip faults in SE Asia observed in outcrop onshore, with their offshore continuation has produced a variety of structural models (particularly pull-apart vs. oblique extension, escape tectonics vs. slab-pull-driven extension) to explain their relationships to sedimentary basins. Key problems with interpreting the offshore significance of major strike-slip faults are: (1) reconciling conflicting palaeomagnetic data, (2) discriminating extensional, and oblique-extensional fault geometries from strike-slip geometries on 2D seismic reflection data, and (3) estimating strike-slip displacements from seismic reflection data.Focus on basic strike-slip fault geometries such as restraining vs. releasing bends, and strongly splaying geometries approach the gulfs of Thailand and Tonkin, suggest major strike-slip faults probably do not extend far offshore Splays covering areas 10,000’s km2 in extent are characteristic of the southern portions of the Sagaing, Mae Ping, Three Pagodas and Ailao Shan-Red River faults, and are indicative of major faults dying out. The areas of the fault tips associated with faults of potentially 100 km+ displacement, scale appropriately with global examples of strike-slip faults on log–log displacement vs. tip area plots. The fault geometries in the Song Hong-Yinggehai Basin are inappropriate for a sinistral pull-apart geometry, and instead the southern fault strands of the Ailao Shan-Red River fault are interpreted to die out within the NW part of the Song Hong-Yinggehai Basin. Hence the fault zone does not transfer displacement onto the South China Seas spreading centre. The strike-slip faults are replaced by more extensional, oblique-extensional fault systems offshore to the south. The Sagaing Fault is also superimposed on an older Paleogene–Early Miocene oblique-extensional rift system. The Sagaing Fault geometry is complex, and one branch of the offshore fault zone transfers displacement onto the Pliocene-Recent Andaman spreading centre, and links with the West Andaman and related faults to form a very large pull-apart basin.  相似文献   

6.
The Guadix–Baza basin is one of a number of intramontane depressions located within the Betic Cordillera (SE Spain), where the geological and geomorphological evolution is controlled by tectonic activity. The basin ceased to be closed after capture by the Atlantic network, when five main land systems developed. Late Pleistocene geological evolution basically consisted of erosional modelling, when badlands were deeply incised in highly erodible materials (marls and silts). Three travertine platforms and several Palaeolithic sites were used to determine that this main incision period fell within a 115,000–48,000 yr range. There are few signs of geomorphological evolution of this basin in the last 48,000 yr. Based on these geomorphological data and soil development, tectonic uplift of the basin probably played a secondary role in its evolution, and climatic conditions in southern Iberia in the 144,000–48,000 yr period were more humid and variable than later.  相似文献   

7.
In this paper we determine the structure and evolution of a normal fault system by applying qualitative and quantitative fault analysis techniques to a 3D seismic reflection dataset from the Suez Rift, Egypt. Our analysis indicates that the October Fault Zone is composed of two fault systems that are locally decoupled across a salt-bearing interval of Late Miocene (Messinian) age. The sub-salt system offsets pre-rift crystalline basement, and was active during the Late Oligocene-early Middle Miocene. It is composed of four, planar, NW–SE-striking segments that are hard- linked by N–S-striking segments, and up to 2 km of displacement occurs at top basement, suggesting that this fault system nucleated at or, more likely, below this structural level. The supra-salt system was active during the Pliocene-Holocene, and is composed of four, NW–SE-striking, listric fault segments, which are soft-linked by unbreached relay zones. Segments in the supra-salt fault system nucleated within Pliocene strata and have maximum throws of up to 482 m. Locally, the segments of the supra-salt fault system breach the Messinian salt to hard-link downwards with the underlying, sub-salt fault system, thus forming the upper part of a fault zone composed of: (i) a single, amalgamated fault system below the salt and (ii) a fault system composed of multiple soft-linked segments above the salt. Analysis of throw-distance (T-x) and throw-depth (T-z) plots for the supra-salt fault system, isopach maps of the associated growth strata and backstripping of intervening relay zones indicates that these faults rapidly established their lengths during the early stages of their slip history. The fault tips were then effectively ‘pinned’ and the faults accumulated displacement via predominantly downward propagation. We interpret that the October Fault Zone had the following evolutionary trend; (i) growth of the sub-salt fault system during the Oligocene-to-early Middle Miocene; (ii) cessation of activity on the sub-salt fault system during the Middle Miocene-to-?Early Pliocene; (iii) stretching of the sub- and supra-salt intervals during Pliocene regional extension, which resulted in mild reactivation of the sub-salt fault system and nucleation of the segmented supra-salt fault system, which at this time was geometrically decoupled from the sub-salt fault system; and (iv) Pliocene-to-Holocene growth of the supra-salt fault system by downwards vertical tip line propagation, which resulted in downward breaching of the salt and dip-linkage with the sub-salt fault system. The structure of the October Fault Zone and the rapid establishment of supra-salt fault lengths are compatible with the predictions of the coherent fault model, although we note that individual segments in the supra-salt array grew in accordance with the isolated fault model. Our study thereby indicates that both coherent and isolated fault models may be applicable to the growth of kilometre-scale, basin-bounding faults. Furthermore, we highlight the role that fault reactivation and dip-linkage in mechanically layered sequences can play in controlling the three-dimensional geometry of normal faults.  相似文献   

8.
The evolution of the Main Cordillera of Central Chile is characterized by the formation and subsequent inversion of an intra-arc volcano-tectonic basin. The world’s largest porphyry Cu-Mo deposits were emplaced during basin inversion. Statistically, the area is dominated by NE- and NW-striking faults, oblique to the N-striking inverted basin-margin faults and to the axis of Cenozoic magmatism. This structural pattern is interpreted to reflect the architecture of the pre-Andean basement. Stratigraphic correlations, syn-extensional deposits and kinematic criteria on fault surfaces show several arc-oblique structures were active as normal faults at different stages of basin evolution. The geometry of syn-tectonic hydrothermal mineral fibers, in turn, demonstrates that most of these structures were reactivated as strike-slip ± reverse faults during the middle Miocene – early Pliocene. Fault reactivation age is constrained by 40Ar/39Ar dating of hydrothermal minerals deposited during fault slip. The abundance and distribution of these minerals indicates fault-controlled hydrothermal fluid flow was widespread during basin inversion. Fault reactivation occurred under a transpressive regime with E- to ENE-directed shortening, and was concentrated around major plutons and hydrothermal centers. At the margins of the former intra-arc basin, deformation was largely accommodated by reverse faulting, whereas in its central part strike-slip faulting was predominant.  相似文献   

9.
This study was undertaken to determine the structural evolution of a normal fault array using detailed kinematic analysis of normal fault tip propagation and linkage, adding to the growing pool of research on normal fault growth. In addition, we aim to provide further insight into the evolution of the offshore Otway Basin, Australia. We use three-dimensional (3D) seismic reflection data to analyse the temporal and spatial evolution of a Late Cretaceous–Cenozoic age normal fault array located in the Gambier Embayment of the offshore Otway Basin, South Australia. The seismic reflection data cover a NW–SE-oriented normal fault array consisting of six faults, which have grown from the linkage of numerous, smaller segments. This fault array overlies and has partial dip-linkage to E–W-striking, basement-involved faults that formed during the initial Tithonian–Barremian rifting event in the Otway Basin. Fault displacement analysis suggests four key stages in the post-Cenomanian growth history of the upper array: (1) nucleation of the majority of faults resulting from resumed crustal extension during the early Late Cretaceous; (2) an intra-Late Cretaceous period of general fault dormancy, with the nucleation of only one newly formed fault; (3) latest Cretaceous nucleation of another newly formed fault and further growth of all other faults; and (4) continued growth of all faults, leading to the formation of the Cenozoic Gambier Sub-basin in the Otway Basin. Our analysis also demonstrates that Late Cretaceous faults, which are located above and dip-link to basement-involved faults, display earlier nucleation and greater overall throw and length, compared with those which do not link to basement-involved faults. This is likely attributed to increased rift-related stress concentrations in cover sediments above the upper tips of basement faults. This study improves our understanding of the geological evolution of the presently under-explored Gambier Embayment, offshore Otway Basin, South Australia by documenting the segmented growth style of a Late Cretaceous normal fault array that is located over, and interacts with, a reactivated basement framework.  相似文献   

10.
The Rides Prerifaines (RP) of Morocco constitute the leading edge of the Rif chain. They involve a Triassic–Palaeocene succession deposited on a peneplained Palaeozoic fold belt and accumulated in basins delimited by NE–SW-trending normal fault systems. A significant hiatus separates an overlying Middle Miocene–Upper Miocene foredeep sequence. The reconstruction of the complex structural evolution of the RP during the later compressive phases that affected the Rif chain since Middle Miocene time has been the aim of this paper. We integrated field structural analyses, seismic line interpretation, and analogue modelling in order to evaluate the control exerted by the Late Triassic–Jurassic normal fault systems onto the later compressive tectonics. The maximum compression direction associated with the first compressive phase is roughly NE–SW to ENE–WSW oriented. During this phase the Mesozoic basin fill was scooped-out from the graben and the main décollement level were the Triassic evaporites. Since Pliocene times the maximum compression direction was oriented roughly N–S. During this phase the RP assumed their present structural setting. The earlier normal faults delimiting the Mesozoic graben were reactivated in a strike–slip mode also involving the Palaeozoic basement. The analogue modelling experiments demonstrated that the basement reactivation promoted salt tectonics and favoured fluid circulation.  相似文献   

11.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

12.
The Cuzco region, which is located above a change in subduction geometry, appears to be characterized by a variable Plio-Quaternary tectono-sedimentary evolution essentially located along the major fault system that separates the High Plateaux from the Eastern Cordillera. After the higher surface formation of the High Plateaux, a set of Neogene basins were filled by Miocene “ fluvio-torrential” series and by Plio-Pleistocene fluvio-lacustrine deposits. The Neogene series have been affected by compressional tectonic forces attributed to the Late Miocene. This compression is followed by roughly E-W trending syn-sedimentary extensional tectonics attributed to the Pliocene; it is related to reactivation of the pre-existing major faults, basin evolution, and volcanic activity concentrated along the faults. In the Early Pleistocene, fluvio-lacustrine deposits are affected by syn- and post-sedimentary compressional tectonism it is characterized by shortening that trends both N-S and E-W and produces folding and faulting of the sedimentary cover. Extensional tectonism trending roughly N-S has been taking place from the Middle Pleistocene to the Present; it is coeval with shoshonitic volcanic activity, and with sedimentation of fluvio-lacustrine terraces, torrential fans and moraines. Quaternary and active normal faults due to this tectonism, are located in a narrow zone more than 100 km-long between the High Plateaux and the Eastern Cordillera, and two 15 km-long fault sectors in the Eastern Cordillera. Characteristic Pleistocene scarps, 400 m or more high, are due to the cumulative normal offset, and there are also little scarps, with heights ranging between 2 and 20 m, which are related to Holocene fault reactivations. Recent fault reactivation on the Cuzco fault system, during the April 5, 1986 earthquake (mb = 5.3), is due to the N-S trending extension. This state of stress, located at a mean elevation of roughly 3730 m, is generally homogeneous to different scales. The active Cuzco normal faults may be a consequence of adjustment between the compensated Western Cordillera and the undercompensated Eastern Cordillera, this latter being uplifted higher than its isostatic equilibrium due to compression acting on its eastern edge. The variation of the state of stress, during the Plio-Quaternary is in agreement with the variations of the compressional boundary forces. It may be explained by variation of the convergence rate or by the variation of pull-slab forces.  相似文献   

13.
The interplay between the emplacement of crustal blocks (e.g. “ALCAPA”, “Tisza”, “Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, which seperates ALCAPA from Tisza-Dacia. The presented study provides new kinematic data from this transfer zone. Early Burdigalian (20.5 to ∼18.5 Ma) SE-directed thrusting of the easternmost tip of ALCAPA (Pienides), over Tisza-Dacia is linked to movements along the Mid-Hungarian fault zone and the Periadriatic line, accommodating the lateral extrusion of ALCAPA. Minor Late Burdigalian (∼18.5 to 16 Ma) NE-SW extension is interpreted as related to back-arc extension. Post Burdigalian (post-16 Ma) NE–SW shortening and NW–SE extension correlate with “soft collision” of Tisza-Dacia with the European foreland coupled with southward migration of active subduction. During this stage the Bogdan-Voda and Dragos-Voda faults were kinematically linked to the Mid-Hungarian fault zone. Sinistral transpression (16 to 12 Ma) at the Bogdan-Voda fault was followed by sinistral transtension (12–10 Ma) along the coupled Bogdan-Dragos-Voda fault system. During the transtensional stage left-lateral offset was reduced eastwards by SW trending normal faults, the fault system finally terminating in an extensional horse-tail splay.  相似文献   

14.
Physical models predict that multiphase rifts that experience a change in extension direction between stretching phases will typically develop non-colinear normal fault sets. Furthermore, multiphase rifts will display a greater frequency and range of styles of fault interactions than single-phase rifts. Although these physical models have yielded useful information on the evolution of fault networks in map view, the true 3D geometry of the faults and associated interactions are poorly understood. Here, we use an integrated 3D seismic reflection and borehole dataset to examine a range of fault interactions that occur in a natural multiphase fault network in the northern Horda Platform, northern North Sea. In particular we aim to: i) determine the range of styles of fault interaction that occur between non-colinear faults; ii) examine the typical geometries and throw patterns associated with each of these different styles; and iii) highlight the differences between single-phase and multiphase rift fault networks. Our study focuses on a ca. 350 km2 region around the >60 km long, N–S-striking Tusse Fault, a normal fault system that was active in the Permian–Triassic and again in the Late Jurassic-to-Early Cretaceous. The Tusse Fault is one of a series of large (>1500 m throw) N–S-striking faults forming part of the northern Horda Platform fault network, which includes numerous smaller (2–10 km long), lower throw (<100 m), predominantly NW–SE-striking faults that were only active during the Late Jurassic to Early Cretaceous. We examine how the 2nd-stage NW–SE-striking faults grew, interacted and linked with the N–S-striking Tusse Fault, documenting a range of interaction styles including mechanical and kinematic isolation, abutment, retardation and reactivated relays. Our results demonstrate that: i) isolated, and abutting interactions are the most common fault interaction styles in the northern Horda Platform; ii) pre-existing faults can act as sites of nucleation for 2nd-stage faults or may form mechanical barriers to propagation; iii) the throw distribution on reactivated 1st-stage faults will be modified in a predictable manner if they are intersected or influenced by 2nd-stage faults; iv) sites of fault linkage and relay-breaching associated with the first phase of extension can act as preferential nucleation sites for 2nd-stage faults; and v) the development of fault intersections is a dynamic process, involving the gradual transition from one style to another.  相似文献   

15.
塔里木盆地西北部的阿瓦提凹陷周缘发育晚新生代正断层,其中第四纪的正断层活动是塔里木盆地构造地质研究的新发现。这些正断层受先存基底断裂控制,平面上沿沙井子断裂带、阿恰断裂带和吐木休克断裂带右阶式雁列状分布,构成右阶左旋张扭性正断层带。剖面上,向下断达下古生界后不清楚,向上断至第四系上部,构成阶梯状或小型地堑(或负花状构造)构造。生长系数计算结果表明,正断层带形成于新近纪末,第四纪早-中期持续活动,到第四纪晚期停止活动。这些张扭性正断层带的成因是阿瓦提地块相对于周边地质体的顺时针旋转而致,其动力学来源于印度板块与欧亚板块陆-陆碰撞,在晚喜马拉雅山期依然持续作用而导致的远程效应。  相似文献   

16.
塔里木盆地西南坳陷发现晚新生代伸展构造   总被引:1,自引:0,他引:1       下载免费PDF全文
通过认真、系统的地震资料解释, 我们在塔里木盆地西南坳陷首次发现晚新生代正断层。 这些正断层发育于西南坳陷的东北部, 走向 NE-SW, 剖面上组合成堑垒构造, 个别剖面上显示负花状构造特征。 正断层主要发育于新生界, 向上断至的最高层位是第四系更新统下部。 倾向相反的正断层向下交汇后断距消失, 断层继续向下延伸的情况不清楚。 根据断距 变化和生长指数计算, 正断层形成于上新世晚期, 持续演化至更新世早期。 正断层的形成演化过程与以往在阿瓦提凹陷、巴楚隆起和塘沽孜巴斯坳陷发现的晚新生代正断层基本一致, 正断层活动时间为 ca. 3~2 Ma。 它们形成于一个区域性弱伸展构造应力场, 代表印度-亚洲碰撞远程效应下, 塔里木盆地脉式挤压冲断过程中的一个构造间歇期。  相似文献   

17.
Cenozoic sedimentary deposits in central-southern Ningxia province, NW China are an important record of Tertiary tectonic events along the evolving Qinghai–Tibetan Plateau’s northeast margin. Shortly after the onset of the Indo-Eurasia collision to the south, a thrust belt and adjoining foreland basin began to form during 40–30 Ma. The Eocene Sikouzi Formation developed in a distal setting to this basin, in normal fault-bound basins that may have formed in a forebulge setting. Subsequent deposition of the Oligocene Qingshuiying Formation occurred during a phase of apparently less intense tectonism and the previous underfilled foreland basin became overfilled. During the Early Miocene, contractional deformation was mainly distributed to the west of the Liupan Shan. This resulted in deformation of the Qingshuiying Formation as indicated by an unconformity with the overlying Miocene Hongliugou Formation. The unconformity occurs proximal to the Haiyuan Fault suggesting that the Haiyuan Fault may have begun movement in the Early Miocene. In the Late Miocene, thrusting occurred west of the southern Helan Shan and an unconformity developed between the Hongliugou and Qingshuiying Formations proximal to the the Cha-Gu Fault. Relationships between the Miocene stratigraphy and major faults in the region imply that during the Late Miocene the deformation front of the Qinghai–Tibetan Plateau had migrated to the Cha-Gu Fault along the western Ordos Margin, and the Xiang Shan was uplifted. Central-southern Ningxia was then incorporated into the northeast propagating thrust wedge. The driving force for NE propagation of the thrust wedge was most likely pronounced uplift of the northeastern plateau at the same time. Analysis of the sedimentary record coupled with consideration of the topographic evolution of the region suggests that the evolving fold-and-thrust belt experienced both forward-breaking fold-and-thrust belt development, and out-of-sequence fault displacements as the thrust wedge evolved and the foreland basin became compartmentalised. The documented sedimentary facies and structural relationship also place constraints on the Miocene-Recent evolution of the Yellow River and its tributaries.  相似文献   

18.
Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Mu?la–Gökova Gulf region. During the Oligocene–Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale–Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N–S compression/transpression, during which sediments in the Eskihisar–T?naz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene–Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yata?an Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo–Miocene sediments. Plio-Quaternary marked the activation of N–S extension and the development of the E–W-trending Mu?la–Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.  相似文献   

19.
The left-lateral Dead Sea Transform (DST) in the Middle East is one of the largest continental strike-slip faults of the world. The southern segment of the DST in the Arava/Araba Valley between the Dead Sea and the Red Sea, called Arava/Araba Fault (AF), has been studied in detail in the multidisciplinary DESERT (DEad SEa Rift Transect) project. Based on these results, here, the interpretations of multi-spectral (ASTER) satellite images and seismic reflection studies have been combined to analyse geologic structures. Whereas satellite images reveal neotectonic activity in shallow young sediments, reflection seismic image deep faults that are possibly inactive at present. The combination of the two methods allows putting some age constraint on the activity of individual fault strands. Although the AF is clearly the main active fault segment of the southern DST, we propose that it has accommodated only a limited (up to 60 km) part of the overall 105 km of sinistral plate motion since Miocene times. There is evidence for sinistral displacement along other faults, based on geological studies, including satellite image interpretation. Furthermore, a subsurface fault is revealed ≈4 km west of the AF on two ≈E–W running seismic reflection profiles. Whereas these seismic data show a flower structure typical for strike-slip faults, on the satellite image this fault is not expressed in the post-Miocene sediments, implying that it has been inactive for the last few million years. About 1 km to the east of the AF another, now buried fault, was detected in seismic, magnetotelluric and gravity studies of DESERT. Taking together various evidences, we suggest that at the beginning of transform motion deformation occurred in a rather wide belt, possibly with the reactivation of older ≈N–S striking structures. Later, deformation became concentrated in the region of today’s Arava Valley. Till ≈5 Ma ago there might have been other, now inactive fault traces in the vicinity of the present day AF that took up lateral motion. Together with a rearrangement of plates ≈5 Ma ago, the main fault trace shifted then to the position of today’s AF.  相似文献   

20.
Normal faults within orogenic belts can be pre-, syn- or post-orogenic features. We studied the Gubbio normal fault (central Italy), which is an example of a pre-orogenic fault reactivated in a post-orogenic stage. The Gubbio Fault is a 22-km-long fault bordering a Quaternary basin and part of an active faults system in the Umbria–Marche region (Central Italy). The interpretation of a set of seismic profiles enables us to reconstruct the fault geometry in detail and to measure displacement and throw distributions along the fault strike. Seismic data indicate that the Gubbio Fault represents an example of multiple reactivation: at least a portion of the fault was active in the Miocene and only a part of the total displacement was achieved in the Quaternary. The reconstruction of the fault geometry at depth shows that the fault is characterised by listric geometry. The fault is also characterised by a bend along strike and structure contours show that this geometry is maintained at depth. As the fault is commonly addressed as presently active, the maximum fault dimensions are correlated to the maximum expected earthquake, and the presence of the fault bend is discussed as a possible barrier to seismic ruptures propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号