首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

2.
High-carbonaceous stratified formations and related metasomatic rocks of global abundance are among highly promising sources of gold and platinum-group metals (PGMs) in the 21st century. The Au-PGM mineralization of the black-shale type hosted in the Early Karelian Kursk and Oskol groups in central Russia is characterized by complex multicomponent and polymineralic composition (more than 60 ore minerals, including more than 20 Au and PGM phases) and diverse speciation of noble metals in form of (1) native elements (gold, palladium, platinum, osmium, silver); (2) metallic solid solutions and intermetallic compounds (Pt-bearing palladium, Fe-bearing platinum, gold-platinum-palladium, osmiridium, rutheniridosmin, platiridosmin, platosmiridium, Hg-Te-Ag-bearing gold, gold-silver amalgam, arquerite, palladium stannide (unnamed mineral), platinum-palladium-gold-silver-tin); (3) PGM, Au, and Ag sulfoarsenides, tellurides, antimonides, selenides, and sulfosalts (sperrylite, irarsite, hessite, Pd and Pt selenide (unnamed mineral)), testibiopalladinite, Pd antimonide (unnamed mineral), etc.; and (4) impurities in ore-forming sulfides, sulfoarsenides, tellurides, antimonides, and selenides. The chemical analyses of PGM and Au minerals are presented, and their morphology and microstructure are considered.  相似文献   

3.
The Grasvally Norite–Pyroxenite–Anorthosite (GNPA) member within the northern limb of the Bushveld Complex is a mineralized, layered package of mafic cumulates developed to the south of the town of Mokopane, at a similar stratigraphic position to the Platreef. The concentration of platinum-group elements (PGE) in base metal sulfides (BMS) has been determined by laser ablation inductively coupled plasma–mass spectrometry. These data, coupled with whole-rock PGE concentrations and a detailed account of the platinum-group mineralogy (PGM), provide an insight into the distribution of PGE and chalcophile elements within the GNPA member, during both primary magmatic and secondary hydrothermal alteration processes. Within the most unaltered sulfides (containing pyrrhotite, pentlandite, and chalcopyrite only), the majority of IPGE, Rh, and some Pd occur in solid solution within pyrrhotite and pentlandite, with an associated Pt–As and Pd–Bi–Te dominated PGM assemblage. These observations in conjunction with the presence of good correlations between all bulk PGE and base metals throughout the GNPA member indicate the presence and subsequent fractionation of a single PGE-rich sulfide liquid, which has not been significantly altered. In places, the primary sulfides have been replaced to varying degrees by a low-temperature assemblage of pyrite, millerite, and chalcopyrite. These sulfides are associated with a PGM assemblage characterized by the presence of Pd antimonides and Pd arsenides, which are indicative of hydrothermal assemblages. The presence of appreciable quantities of IPGE, Pd and Rh within pyrite, and, to a lesser, extent millerite suggests these phases directly inherited PGE contents from the pyrrhotite and pentlandite that they replaced. The replacement of both the sulfides and PGM occurred in situ, thus preserving the originally strong spatial association between PGM and BMS, but altering the mineralogy. Precious metal geochemistry indicates that fluid redistribution of PGE is minimal with only Pd, Au, and Cu being partially remobilized and decoupled from BMS. This is also indicated by the lower concentrations of Pd evident in both pyrite and millerite compared with the pentlandite being replaced. The observations that the GNPA member was mineralized prior to intrusion of the Main Zone and that there was no local footwall control over the development of sulfide mineralization are inconsistent with genetic models involving the in situ development of a sulfide liquid through either depletion of an overlying magma column or in situ contamination of crustal S. We therefore believe that our observations are more compatible with a multistage emplacement model, where preformed PGE-rich sulfides were emplaced into the GNPA member. Such a model explains the development and distribution of a single sulfide liquid throughout the entire 400–800 m thick succession. It is therefore envisaged that the GNPA member formed in a similar manner to its nearest analogue the Platreef. Notable differences however in PGE tenors indicate that the ore-forming process may have differed slightly within the staging chambers that supplied the Platreef and GNPA member.  相似文献   

4.
The Early Paleoproterozoic Monchegorsk Complex comprises two independent large layered mafic-ultramafic intrusions: the Monchegorsk pluton and the Main Range massif formed about 2.50 and 2.46 Ga ago, respectively. They are composed of similar cumulates, though they differ somewhat in the isotopic parameters of rocks, cumulate stratigraphy and derived from siliceous high-Mg series melts that arose in the same large long-living volcanic center. The economic syngenetic Ni-Cu-PGE sulfide mineralization related to the earlier Monchegorsk pluton is represented by two types of ores. The first type, pertaining to fractionation of the primary melt, is opposite to the reef formed due to injection of a special ore-bearing melt into the solidifying intrusive chamber. The primary magmatic mineralization is largely composed of Ni-Fe-Cu sulfides and Pd-Pt sulfides, bismuthides, and tellurides. Only small PGE and probably chromite occurrences are related to the Main Range massif. In the Mid-Paleoproterozoic (2.0-1.9 Ga), the complex was transformed into a collage of tectonic blocks confined to the regional fault zone. The Monchegorsk pluton was retained better, and only rocks of its southern framework were involved into tectonic and metamorphic reworking with the formation of economic metamorphic low-sulfide PGE mineralization with widespread Pd and Pt telluro-bismuthides, arsenides, stannides, antimonides, and selenides. The ore formation was accompanied by PGE redistribution and segregation of lenticular orebodies with diffuse contours. Thus, the Monchegorsk ore cluster is characterized by juxtaposition of unaltered primary magmatic deposits and those formed as a result of their metamorphism and distinguished from the former by structure and composition. The comparative study of these deposits opens up new possibilities for comprehending ore-forming processes in the same situations.  相似文献   

5.
The Ferguson Lake Ni–Cu–Co–platinum-group element (PGE) deposit in Nunavut, Canada, occurs near the structural hanging wall of a metamorphosed gabbroic sill that is concordant with the enclosing country rock gneisses and amphibolites. Massive to semi-massive sulfide occurs toward the structural hanging wall of the metagabbro, and a low-sulfide, high-PGE style of mineralization (sulfide veins and disseminations) locally occurs ~30–50 m below the main massive sulfide. Water–rock interaction in the Ferguson Lake Ni–Cu–Co–PGE deposit is manifested mostly as widespread, post-metamorphic, epidote–chlorite–calcite veins, and replacement assemblages that contain variable amounts of sulfides and platinum-group minerals (PGM). PGM occur as inclusions in magmatic pyrrhotite and chalcopyrite in both the massive sulfide and high-PGE zones, at the contact between sulfides and hornblende or magnetite inclusions in the massive sulfide, in undeformed sulfide veins and adjacent chlorite and/or epidote halos, in hornblende adjacent to hydrothermal veins, and in plagioclase–chlorite aggregates replacing garnet cemented by sulfide. The PGM are mostly represented by the kotulskite (PdTe)–sobolevskite (PdBi) solid solution but also include michenerite (PdBiTe), froodite (PdBi2), merenskyite (PdTe2), mertieite II (Pd8[Sb,As]3), and sperrylite (PtAs2) and occur in variety of textural settings. Those that occur in massive and interstitial sulfides, interpreted to be of magmatic origin and formed through exsolution from base metal sulfides at temperatures <600°C, are dominantly Bi rich (i.e., Te-bearing sobolevskite), whereas those that occur in late-stage hydrothermal sulfide/silicate veins and their epidote–chlorite alteration halos tend to be more Te rich (i.e., Bi-bearing kotulskite). The chemistry and textural setting of the various PGM supports a genetic model that links the magmatic and hydrothermal end-members of the sulfide–PGM mineralization. The association of PGM with magmatic sulfides in the massive sulfide and high-PGE zones has been interpreted to indicate that PGE mineralization was initially formed through exsolution from base metal sulfides which formed by magmatic sulfide liquid segregation and crystallization. However, the occurrence of PGM in undeformed sulfide-bearing veins and in their chlorite–epidote halos and differences in PGM chemistry indicate that hydrothermal fluids were responsible for post-metamorphic redistribution and dispersion of PGE.  相似文献   

6.
Summary The Neoproterozoic Bou Azzer ophiolite complex hosts numerous, small lenticular bodies of massive and disseminated chromite. Metallurgical-grade high-Mg and high-Cr spinels (cores with 48–62 wt% Cr2O3) reveal complex alteration patterns of successive Cr and Mn enrichment and loss of Al towards the rims, while the Mg# ratios [(Mg/(Mg + Fe2+)] remain almost constant. Concentration patterns of platinum-group elements are typical for ophiolitic chromitite poor in sulfides, with predominance of the IPGE, variable Rh, and low Pt and Pd. The most abundant platinum-group mineral is Rh-bearing laurite that occurs either included in spinel or in silicate matrix, whereas Os-Ir-Ru alloy is always included in spinel. Laurite inclusions reveal complex intergrowth textures with Rh-Ru-Pt rich alloy, and with Rh-rich sulfide. Most laurites display trends to sulfur-poor compositions leading to local formation of very fine-grained Ru-Os-Ir alloy phases. Ni-Co-Fe sulfides, arsenides and sulfarsenides devoid of PGE are associated with the alteration of chromite. Textural position and chemical composition of the base metal inclusions, as well as comparison of alteration features between chromite and accessory chromian spinel in the Co-Ni-As ores of the Bou Azzer ophiolite indicate a close connection. It is suggested that hydrothermal fluids percolated through the marginal zones of the ophiolite belt during greenschist facies metamorphism and deposited Ni-Co-Fe arsenides, sulfarsenides and minor sulfides as accessories within altered chromitites, and also in structurally favourable zones as Ni-Co-As ores. Author’s address: Dr. Frank Melcher, Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany  相似文献   

7.
Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.  相似文献   

8.
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.  相似文献   

9.
The Baula-Nuasahi Complex, on the southern flank of the Singhbhum Archaean nucleus in north-eastern India, exposes a series of Mesoarchaean igneous suites. These are (1) a gabbro–anorthosite unit, which is petrographically homogeneous, although mineral-chemistry data hint at a subtle eastward differentiation; (2) a peridotite unit (with three chromitite layers) together with (3) a pyroxenite unit which display cumulate textures, modal layering, and (for the peridotite unit) differentiation trends in both mineralogy and mineral chemistry; and (4) the Bangur gabbro (~3.1 Ga), which defines an oblong intrusion, crosscutting the older igneous suites in the southern part of the complex, with a curvilinear NW-trending apophysis, 2 km long and up to 40 m wide. Magmatic breccia comprising ultramafic and chromitite wall-rock clasts in a gabbro matrix is exposed at the contact of the main Bangur gabbro body and also forms the entire Bangur gabbro apophysis. Concentrations of platinum-group minerals (PGMs) are found where the breccia contains abundant chromitite clasts, and two types of platinum-group-element (PGE) mineralisation are recognised. Type 1 (Pt 1.1–14.2, Pd 0.1–2.1 ppm, with an average Pt/Pd=8–9) is a contact-type mineralisation which occurs in the breccia at the contact between the Bangur intrusion and its ultramafic host. The PGMs—Pt alloys (isoferroplatinum) and sulphides (braggite, malanite)—are enclosed by pyroxene and plagioclase, reflecting a magmatic origin. Significant wall-rock assimilation by the magma (giving rise to the Bangur gabbro) is indicated by changes in pyroxene composition and by the presence of relicts of chromite (from the host) now altered to secondary ferritchromite in the contact zone. Type 2 PGE mineralisation (Pt 0.3–1.6, Pd 1.8–6.0 ppm, with Pt/Pd~0.5–3.0) is restricted to the breccia apophysis of the Bangur gabbro where it occurs in the breccia matrix, associated with an intense hydrothermal alteration which does not exist in the contact zone. PGMs (PGE arsenides, tellurides, bismuthides and antimonides) and, where present, base-metal sulphides (BMSs) form intergrowths with hydrous silicates, reflecting a hydrothermal origin. Oxygen isotope geothermometry documents the main stages of hydrothermal alteration within a decreasing temperature range between 700–1,000 and 500–600 °C, and oxygen, hydrogen and sulphur isotopes show that the hydrothermal fluids were derived from the magma rather than an external source. Pervasive hydrothermal alteration in the breccia apophysis likely represents upward channelling of late-magmatic fluids along a narrow, near-vertical, subplanar conduit which led away from the main magma chamber. We suggest that Type 2 mineralisation was produced by late-magmatic hydrothermal remobilisation and reconcentration of Type 1 PGE mineralisation, and that the composition of the hydrothermal fluids controlled whether BMSs were enriched along with the PGMs.Editorial handling: P. Lightfoot  相似文献   

10.
The geology and mineralogy of host metamorphic rocks, the mineralogy of sulfide ores, and the distribution of PGE mineralization were studied in detail for the Kvinum-1 and Kvinum-2 copper-nickel occurrences of the Kvinum ore field, which are the most promising targets for the copper-nickel-PGE mineralization of the Sredinny Range of Kamchatka. It was established that stringer-disseminated and massive copper-nickel ores are localized in amphibole peridotites, cortlandites, and form ore bodies varying from tens of centimeters to 5–20 m thick among the layered cortlandite-gabbroid massifs. The massive sulfide ores were found only at the bottom of cortlandite bodies and upsection grade into stringer-disseminated and disseminated ores. Pyrrhotite, chalcopyrite, and pentlandite are the major ore minerals with a sharply subordinate amount of pyrite, sphalerite, galena, arsenopyrite, and löllingite. Besides pentlandite, the Ni-bearing minerals include sulforasenides (gersdorffite), arsenides (nickeline), and tellurides (melonite) of nickel. It was found that PGE mineralization represented by antimonides (sudburyite) and tellurobismuthides (michenerite) of Pd with sharply subordinate platinum arsenide (sperrylite) is confined to the apical parts of massive sulfide zones and the transition zone to the stringer-disseminated ores. Ore intervals enriched in arsenides and tellurides of Ni, Pd, and Bi contain high-purity gold. In the central parts of the orebodies, the contents of PGE and native gold are insignificant. It is suggested that the contents of major sulfide minerals and the productivity of PGE mineralization in the cortlandites are defined by combined differentiation and sulfurization of ultramafic derivatives under the effect of fluids, which are accumulated at the crystallization front and cause layering of parental magmas with different sulfur contents. The fluid-assisted layering of mafic-ultramafic massifs resulted in the contrasting distribution of PGM in response to uneven distribution of sulfur (as well as As, Te, and Bi) during liquid immiscibility. The productivity of PGE mineralization significantly increases with increasing contents of S, As, Te, and Bi (elements to which Pt and, especially, Pd have high affinity) in fluids.  相似文献   

11.
金川超大型铜镍硫化物矿床的铂族元素地球化学特征   总被引:21,自引:2,他引:19  
对金川超大型铜镍岩浆硫化物矿床岩石、矿石的铂族元素地球化学特征研究表明 ,金川岩体的平均Cu/Pd值远大于原生地幔岩浆的Cu/Pd值 ,说明其岩石为因硫化物析离而失去Pd的岩浆所结晶 ;且岩石的PGE具有部分熔融趋势 ,与地幔橄榄岩接近 ,这些均指示存在岩浆熔离作用。该矿床岩石、矿石的PGE球粒陨石标准化分布模式比较对应 ,均可分为两种类型 ,反映了岩浆多次侵入、熔离分异同时成岩成矿的特征。另外 ,PGE S关系分析表明其成岩成矿过程中有少量地壳物质混染。PGE地球化学特征参数还指示了其高镁拉斑玄武质母岩浆的性质。  相似文献   

12.
缅甸铂族金属砂矿中的矿物种类   总被引:1,自引:0,他引:1  
赵怀志  陈立新 《矿物学报》1994,14(3):285-291,T001
采用电子探针分析(EPMA),对缅甸铂族金属砂矿中的矿物种类进行了研究。物质组成研究查明:主要组合矿物是Pt、Ir、Os、Ru的自然元素和金属互化物。主要矿物是自然铂矿、铁铂合金、钌铱锇矿、等轴锇铱矿和铱锇矿。次要及稀有矿物是铂族金属的硫化物、砷化物、包括(Rh、Pd、Pt)2As和(Rh、Pd、Pt、Ni)2As两种陌生矿物、锑化物,以及含铂族元素的Fe、Ni、Cu硫化物。  相似文献   

13.
Summary An unusually thick sulfur-poor mineralized zone enriched in platinum-group elements (PGE) is described in the Hanumalapur Complex, Shimoga District, Karnataka State, India. This promising occurrence was discovered in the early 1990s and the best samples at the time of writing have yielded Pt+Pd concentrations in excess of six ppm. The western part of the area concerned belongs to the late Archaean Dharwar Super Group (3000–2500 Ma), while the eastern part is occupied predominantly by a granite-gneiss terrain ∼3000 Ma in age. Ten mafic-ultramafic complexes which host interesting vanadium-bearing titanomagnetite occurrences are encountered in the western part, one of which is the Hanumalapur Complex. The PGE mineralized zone in this complex may be divided into four mineralogically distinctive types, which are, in descending order of PGE content: 1) a silicate-hosted Pd type, 2) a silicate-hosted Pt type, 3) a base-metal sulfide-hosted Pd type, and 4) an oxide-hosted PGE type. The genesis of the mineralization is somewhat unclear at this point of investigation, especially because of complete re-crystallization, but the evidence gathered so far suggests something different than a traditional orthomagmatic model requiring magma mixing processes and resulting in sulfide immiscibility. This is backed-up by the general lack of base metal sulfides in favor of chromite, although pure chlorite-amphibole and chlorite-albite-epidote-amphibole rocks may contain significant PGE concentrations regardless of the amount of chromite. The PGM textures show little evidence of hydrothermal alteration and remobilization, but the PGE mineralogy itself displays some characteristics of fluid action, as it seems that there are some OH-bearing Pt and Pd minerals present. The first author was Deceased Author’s address: R. J. Kaukonen, Department of Geosciences, University of Oulu, Oulu, P.O. Box 3000, FIN-90014 Finland  相似文献   

14.
In situ scanning electron microscopy–energy dispersive X-ray spectrometry analysis of platinum group minerals (PGM) and base metal sulfides in the UG2 chromitite shows that this ore body is zoned along at least ∼6 km of strike. The uppermost part of the UG2 chromitite, referred to as the leader seam, is ∼16 cm thick and has a PGM assemblage that is dominated by PGE arsenides, sulpho-arsenides, and alloys (∼70 vol.% of all PGM), which are typical secondary PGM assemblages in other segments of UG2. This is the first time such laterally persistent secondary assemblages have been identified in the UG2 chromitite, as previously, they were only known to occur adjacent to transgressive fluid-bearing structures (e.g., pipes, faults). The underlying main seam is thicker (one to nine seams totaling ∼130 cm) and has a PGM assemblage that consists mostly of Pt sulfide, Pt–Pd sulfide, Pt–Rh–Cu sulfide, laurite, and Fe–Pt alloys (∼85 vol.% of all PGM), typically regarded as primary magmatic constituents of UG2 chromitite. There are, however, some subtle vertical changes in the PGM assemblages of the main seam that include the occasional presence of secondary assemblages in the top and bottom parts. The origin of these secondary PGM assemblages is related to alteration by hydrothermal fluids and/or fluid-rich melts that infiltrated during crystallization of the UG2 and may possibly have been derived from the UG2 chromitite itself.  相似文献   

15.
The role of metamorphic processes (including postmagmatic ones) in the origin of mineral assemblages is estimated for the layered unit (LU) and barren rocks (BR) in the Pana Intrusion. Numerical simulations indicate that metamorphic processes simultaneously modified the mineralogical composition of the rocks, Pt and Pd compounds, and the fluids. The process resulted in systematic changes in the mineralogical and fluid composition and is realistically reproduced by physicochemical numerical simulations. Our results make it possible to estimate the effect of P-T parameters on the composition of metallic Pt and Pd and their sulfides, selenides, and tellurides and the composition of the fluid phase during the transformations and localization of the PGE ore mineralization.  相似文献   

16.
17.
Magmatic sulfide deposits typically occur in ultramafic-mafic systems, however, mineralisation can occur in more intermediate and alkaline magmas. Sron Garbh is an appinite-diorite intrusion emplaced into Dalradian metasediments in the Tyndrum area of Scotland that hosts magmatic Cu-Ni-PGE-Au sulfide mineralisation in the appinitic portion. It is thus an example of magmatic sulfide mineralisation hosted by alkaline rocks, and is the most significantly mineralised appinitic intrusion known in the British Isles. The intrusion is irregularly shaped, with an appinite rim, comprising amphibole cumulates classed as vogesites. The central portion of the intrusion is comprised of unmineralised, but pyrite-bearing, diorites. Both appinites and diorites have similar trace element geochemistry that suggests the diorite is a more fractionated differentiate of the appinite from a common source that can be classed with the high Ba-Sr intrusions of the Scottish Caledonides. Mineralisation is present as a disseminated, primary chalcopyrite-pyrite-PGM assemblage and a blebby, pyrite-chalcopyrite assemblage with significant Co-As-rich pyrite. Both assemblages contain minor millerite and Ni-Co-As-sulfides. The mineralisation is Cu-, PPGE-, and Au-rich and IPGE-poor and the platinum group mineral assemblage is overwhelmingly dominated by Pd minerals; however, the bulk rock Pt/Pd ratio is around 0.8. Laser ablation analysis of the sulfides reveals that pyrite and the Ni-Co-sulfides are the primary host for Pt, which is present in solid solution in concentrations of up to 22 ppm in pyrite. Good correlations between all base and precious metals indicate very little hydrothermal remobilisation of metals despite some evidence of secondary pyrite and PGM. Sulfur isotope data indicate some crustal S in the magmatic sulfide assemblages. The source of this is unlikely to have been the local quartzites, but S-rich Dalradian sediments present at depth. The generation of magmatic Cu-Ni-PGE-Au mineralisation at Sron Garbh can be attributed to post-collisional slab drop off that allowed hydrous, low-degree partial melting to take place that produced a Cu-PPGE-Au-enriched melt, which ascended through the crust, assimilating crustal S from the Dalradian sediments. The presence of a number of PGE-enriched sulfide occurrences in appinitic intrusions across the Scottish Caledonides indicates that the region contains certain features that make it more prospective than other alkaline provinces worldwide, which may be linked the post-Caledonian slab drop off event. We propose that the incongruent melting of pre-existing magmatic sulfides or ‘refertilised’ mantle in low-degree partial melts can produce characteristically fractionated, Cu-PPGE-Au-semi metal bearing, hydrous, alkali melts, which, if they undergo sulfide saturation, have the potential to produce alkaline-hosted magmatic sulfide deposits.  相似文献   

18.
Detailed mineralogical and laser ablation-inductively coupled plasma-mass spectrometry studies have revealed the physical manifestation of the platinum-group elements (PGE) within the Platreef at Overysel, northern Bushveld Complex, South Africa. The PGE in the Platreef were originally concentrated in an immiscible sulfide liquid along with semi-metals such as Bi and Te. As the sulfide liquid began to crystallize, virtually all the Os, Ir, Ru and Rh partitioned into monosulfide solid solution (mss), which on further cooling, exsolved to form pyrrhotite and pentlandite with Os, Ir and Ru remaining in solid solution in both phases with Rh prefentially partitioning into pentlandite. Platinum, some Pd and Au were concentrated in the residual sulfide liquid after mss crystallization, and were then concentrated in an immiscible late stage melt along with semi metals, which was expelled to the grain boundaries during crystallization of intermediate solid solution (iss) to form Pt and Pd tellurides and electrum around the margins of the sulfide grains. Tiny droplets of this melt trapped in the crystallizing mss and iss cooled to form Pt–Bi–Te microinclusions in all sulfide phases, whilst the excess Pd was accommodated in solid solution in pentlandite. Minor redistribution and recrystallization by hydrothermal fluids occurred around xenoliths and at the very base of the mineralized zone within the footwall, however, the overall lack of secondary alteration coupled with the volatile-poor nature of the gneissic footwall have allowed the preservation of what may be the most ‘primary’ style of Platreef mineralization. The lack of PGM inclusions within early liquidus phases suggests very early sulfur saturation in the Platreef, lending support to theories involving S saturation occurring prior to intrusion of the Platreef, possibly within a staging chamber.  相似文献   

19.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

20.
The internal structure of the Volchetundra gabbro-anorthosite massif is considered, including localization of low-sulfide PGE mineralization and its mineralogy. The Volchetundra massif 24 km long and 0.5–4.0 km wide occupies the middle part of the Main Range complex, which extends for 75 km in the nearly meridional direction. The main and marginal zones are distinguished in the massif. The marginal zone 20–400 m wide extends along the entire eastern contact of the massif and is primarily composed of mediumgrained meso- and leucocratic norite, gabbronorite, plagioclasite, and less fequent orthopyroxenite. The main zone consists of coarse-grained leucogabbro and gabbronorite with an anorthosite zone in the axial part of the massif. The PGE mineralization of the Volchetundra massif is distinctly subdivided into two types substantially differing in localization, mineralogy, geochemistry, and economic importance. Mineralization of the first type is localized in the marginal zone and characterized by the highest resource potential. Mineralization hosted in the main zone belongs to the second type. The PGE ore of marginal zone is spatially and genetically related to the pyrite-pentlandite-chalcopyrite-pyrrhotite sulfide mineralization (1–5%) in the form of fine inequigranular interstitial disseminations, and less frequent larger grains and pockets localized within two ore zones each up to 2 km in extent. The thickness of separate mineralized layers varies from 0.5 to 3.0 m and up to 45 m in bulges. The average Pt + Pd grade is 1.37 gpt at Pd/Pt = 3.1. The mineralization of the second type has been penetrated by boreholes. Separate intersections do not correlate with one another and are limited in extent both along the strike and down the dip. The PGE mineralization is related to finely dispersed pentlandite-pyrite-pyrrhotite-chalcopyrite sulfides, sulfide emulsions, and less abundant stringer-disseminated sulfide ore. The orebodies vary from 2 to 7 m in thickness. The average Pt + Pd grade is 1.61 gpt; Pd/Pt = 1.3. The PGE mineralization includes 22 mineral species. PGE sulfides (cooperite-braggite-vysotskite; laurite and erlichmanite in insignificant amounts) are predominant. Bismuthotellurides (moncheite-kotulskite-merenskyite) and arsenides (sperrylite, palladoarsenite, arsenopalladinite, atheneite) are subordinate in abundance. In addition, sulfoarsenides (platarsite, hollingworthite), tellurides (telargpalite, sopcheite, keithconnite, melonite, hessite), paolovite, and Pt-Fe alloy have been identified. An admixture of native gold and electrum occur constantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号