首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant proportion of the urban areas in Turkey is subject to high seismic risk. An important step for seismic risk mitigation is to define the hazard and damage after an earthquake. This paper proposes an integrated seismic hazard assessment and disaster management processes for Turkey. The proposed methodology utilizes information technologies in its seismic assessment component that provides fast results for assessment. First, image process methodology by using satellite images was implemented in the seismic assessment process for fast evaluation right after an earthquake. Second, the seismic assessment process was integrated with disaster management process. As a result, through integrated seismic hazard evaluation and disaster management procedure, an effective, fast and dependable estimation of loss for Turkey was planned.  相似文献   

2.
Istanbul is home to 40% of the industrial facilities in Turkey. Thirty percent of the population working in industry lives in the city. Past earthquakes have evidenced that the structural reliability of residential and industrial buildings in the country is questionable. In the Marmara region the earthquake hazard is very high with a 2% annual probability of occurrence of a magnitude 7+ earthquake on the main Marmara fault. These facts make the management of industrial risks imperative for the reduction of socioeconomic losses. In this paper we present a first-order assessment of earthquake damage to the industry in Istanbul and raise issues for better characterization and quantification of industrial losses and management of urban industrial risks. This paper borrows from the project report entitled ‘Earthquake Risk Assessment for Industrial Facilities in Istanbul’. The full report can be found at http://www.koeri.boun.edu.tr/depremmuh.html under the link ‘Research and Applied Projects’.  相似文献   

3.
4.
On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey which caused approximately 600 life loss and 4,000 injured people. Although the recorded peak ground accelerations were relatively low (0.15–0.2 g) compared with that of other recent destructive Turkish earthquakes and the code-based design response spectrum, a large number of reinforced concrete buildings with 4–6 stories and non-engineered masonry buildings were either heavily damaged or collapsed in the region. Based on the post-earthquake technical inspections, the goal of this paper is to introduce major reasons for structural damages in the disaster area and to discuss these failures along with the approaches given in the design code which is renewed after August 17, 1999 Marmara Earthquake. Some remarkable lessons learned from earthquake-induced failures and damages specific to building construction techniques are presented in this paper.  相似文献   

5.
The direct damage caused by earthquakes, such as impaired buildings, may interfere with normal business operations and disrupt the function of the industrial chain. Such economic impacts can be evaluated using the input–output analysis developed by Leontief. In this paper, two scenario earthquakes in northern Taiwan both with a return period of 475 years—the Hsinchu Hsincheng and the Yilan Nan-ao earthquakes—are simulated. The results show that the economic impact caused by the Hsincheng earthquake is greater than that resulting from the Nan-ao earthquake, which should be the major scenario considered for the disaster reduction plan. The industries affected the most are the manufacturing, food services and entertainment, storage and retail trade, and public and construction industries. The Nan-ao earthquake causes relatively more losses in the food services and entertainment industries. Most of the repercussion effects of these industries are in the central and southern parts of Taiwan. The loss to the manufacturing sector and its repercussion effects are enormous. Therefore, the government should make it a first priority to encourage the manufacturing sector to implement earthquake mitigations, such as a seismic retrofit, or to provide a seismic evaluation, which can enable firms to engage in mitigation voluntarily. The measure needed to reduce the loss in agriculture is that the government can purchase agricultural products in central and southern Taiwan following the disaster and offer them to survivors in northern Taiwan.  相似文献   

6.
Overview of Taiwan Earthquake Loss Estimation System   总被引:2,自引:1,他引:2  
The National Science Council (NSC) of Taiwan started the HAZ-Taiwan project in 1998 to promote researches on seismic hazard analysis, structural damage assessment, and socio-economic loss estimation. The associated application software, “Taiwan Earthquake Loss Estimation System (TELES)”, integrates various inventory data and analysis modules to fulfill three objectives. First, it helps to obtain reliable estimates of seismic hazards and losses soon after occurrence of large earthquakes. Second, it helps to simulate earthquake scenarios and to provide useful estimates for local governments or public services to propose their seismic disaster mitigation plans. Third, it helps to provide catastrophic risk management tools, such as proposing the seismic insurance policy for residential buildings. This paper focuses on the development and application of analysis modules used in early loss estimation system. These modules include assessments of ground motion intensity, soil liquefaction potential, building damage and casualty.  相似文献   

7.
Bakir  P.G. 《Natural Hazards》2004,33(3):405-425
While laboratory and analytical studies can provide valuable information about earthquake hazard mitigation, the most effective educator is the impact of a full-scale earthquake on a full-scale city. The recent earthquakes in Turkey showed that the governmental as well as individual attitudes towards earthquakes did not represent proportionate responses to the risk levels concerned. Turkey had weaknesses in preparing, planning, mitigating and responding to disasters in spite of the known seismic vulnerability of the country. Many steps have been taken after 1999 earthquakes in Turkey, however, the preparations largely concentrate on the response and recovery phases and a fundamental step to reform the current disaster management system and steps to rehabilitate the vulnerable building stock has not been undertaken until today. This would involve changing the present laws and regulations and de-centralising the disaster management system. The aim of this paper is to propose a national mitigation strategy for Turkey for a time-frame of 10 years. The model proposed is a very comprehensive model for earthquake risk reduction in Turkey and within this context, the legislative and technical aspects of mitigation will be discussed in detail. Strategies for mitigating and retrofitting the existing building stock will also be proposed.  相似文献   

8.
Jiuping Xu  Yi Lu 《Natural Hazards》2012,60(2):199-222
A devastating Ms8.0 earthquake struck Wenchuan on May 12, 2008, a historical county in Sichuan Province, southwest China, which affected more than half of China. This article makes a comparative study on the pre-earthquake prevention and post-earthquake reconstruction of 14 world-famous earthquakes in the last 100 years, generalizes the various problems in the process of recovery and reconstruction and analyzes the reasons for the enormous damage caused by these earthquakes. Through theoretical research and field investigation on post-Wenchuan earthquake recovery and reconstruction, the meta-synthesis pattern has been summarized and developed. Its ideological foundation is meta-synthesis methodology, concrete expression is Wuli–Shili–Renli three-dimensional approach, and practical realization using an integrated framework. Taking post-earthquake recovery and reconstruction as a complicated systematic project, from the vertical perspective, the whole process can be roughly divided into the phases of transitional recovery and comprehensive reconstruction. While from the horizontal perspective, each phase should have its own support systems. From an investigation of the systematic planning and comprehensive implementation, it can be concluded that post-Wenchuan earthquake recovery and reconstruction has made remarkable achievements over the past 3 years. Since disasters continue to threaten humanity around the world, especially climate-induced extreme weather events, other countries could formulate applicable integrated programs for post-disaster recovery and reconstruction, taking the Wenchuan experience as a reference.  相似文献   

9.
Bad weather conditions usually limit the acquisition of optical remote sensing images, while all day and all weather synthetic aperture radar (SAR) shows the ability of providing timely remote sensing data for emergency response and rescue works after earthquake. Because SAR is sensitive to the surface changes caused by earthquake, the modified electromagnetic behaviour by geological disasters and the collapse of buildings can be recorded in SAR images as backscattering intensity changes. Absolute radiometric calibration was performed to SAR products to derive backscattering coefficient sigma nought from image digital number (DN). Based on change detection methods, Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data and TerraSAR-X data acquired for the Ms 8.0 Wenchuan earthquake were used to extract earthquake damage information. This study revealed that landslides showed stronger backscattering and barrier lakes showed lower backscattering in post-earthquake 10 m ALOS PALSAR images comparing to pre-earthquake, and collapsed buildings showed lower backscattering compared to un-collapsed buildings in 1 m TerraSAR-X image. Results showed that SAR data with different spatial resolutions are useful for different earthquake damage information extraction: medium spatial resolution SAR data, e.g. 10 m ALOS PALSAR data, were efficient for secondary geological disaster extraction; high-resolution SAR data, e.g. 1 m TerraSAR-X data, with the help of ancillary GIS data or high-resolution optical data, could be used to extract building collapse information in urban areas. This study indicates that SAR remote sensing data can provide earthquake damage information at early emergency stage and assist the field surveying, further damage assessment and post-earthquake reconstruction.  相似文献   

10.
Worldwide, earthquakes and related disasters have persistently had severe negative impacts on human livelihoods and have caused widespread socioeconomic and environmental damage. The severity of these disasters has prompted recognition of the need for comprehensive and effective disaster and emergency management (DEM) efforts, which are required to plan, respond to and develop risk mitigation strategies. In this regard, recently developed methods, known as multi-criteria decision analysis (MCDA), have been widely used in DEM domains by emergency managers to greatly improve the quality of the decision-making process, making it more participatory, explicit, rational and efficient. In this study, MCDA techniques of the Analytical Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), integrated with GIS, were used to produce earthquake hazard and risk maps for earthquake disaster monitoring and analysis for a case study region of Küçükçekmece in Istanbul, Turkey. The five main criteria that have the strongest influence on the impact of earthquakes on the study region were determined: topography, distance to epicentre, soil classification, liquefaction and fault/focal mechanism. AHP was used to determine the weights of these parameters, which were also used as input into the TOPSIS method and GIS (ESRI ArcGIS) for simulating these outputs to produce earthquake hazard maps. The resulting earthquake hazard maps created by both the AHP and TOPSIS models were compared, showing high correlation and compatibility. To estimate the elements at risk, population and building data were used with the AHP and TOPSIS hazard maps for potential loss assessment; thus, we demonstrated the potential of integrating GIS with AHP and TOPSIS in generating hazard maps for effective earthquake disaster and risk management.  相似文献   

11.
This study aims to carry out a seismic risk assessment for a typical mid-size city based on building inventory from a field study. Contributions were made to existing loss estimation methods for buildings. In particular, a procedure was introduced to estimate the seismic quality of buildings using a scoring scheme for the effective parameters in seismic behavior. Denizli, a typical mid-size city in Turkey, was used as a case study. The building inventory was conducted by trained observers in a selected region of Denizli that had the potential to be damaged from expected future earthquakes according to geological and geotechnical studies. Parameters that are known to have some effect on the seismic performance of the buildings during past earthquakes were collected during the inventory studies. The inventory includes data of about 3,466 buildings on 4,226 parcels. The evaluation of inventory data provided information about the distribution of building stock according to structural system, construction year, and vertical and plan irregularities. The inventory data and the proposed procedure were used to assess the building damage, and to determine casualty and shelter needs during the M6.3 and 7.0 scenario earthquakes, representing the most probable and maximum earthquakes in Denizli, respectively. The damage assessment and loss studies showed that significant casualties and economic losses can be expected in future earthquakes. Seismic risk assessment of reinforced concrete buildings also revealed the priorities among building groups. The vulnerability in decreasing order is: (1) buildings with 6 or more stories, (2) pre-1975 constructed buildings, and (3) buildings with 3–5 stories. The future studies for evaluating and reducing seismic risk for buildings should follow this priority order. All data of inventory, damage, and loss estimates were assembled in a Geographical Information System (GIS) database.  相似文献   

12.
Reconnaissance observations are presented on the building damage caused by the May 19, 2011, Kütahya–Simav earthquake in Western Turkey as well as an overview of strong ground motion data recorded during the earthquake is given. According to Disaster and Emergency Management Presidency of Turkey, the magnitude of the earthquake is 5.7 in local magnitude scale. Although the earthquake can be regarded as a moderate event when considering its magnitude and strong motion recordings, it caused excessive structural damage to buildings in Simav district and several villages in the near vicinity. During the field investigation, different types of structural damage were observed mainly in the reinforced concrete frame buildings with infill walls and masonry buildings with various types of construction materials. Observed damage resulted from several deficiencies in structural and non-structural components of the buildings. Poor construction materials and workmanship, non-conforming earthquake-resistant design and construction techniques and non-ductile detailing are the main reasons for such an extensive damage, as observed in many past earthquakes in Turkey.  相似文献   

13.
Empirical, theoretical or hybrid methods can be used for the vulnerability analysis of structures to evaluate the seismic damage data and to obtain probability damage matrices. The information on observed structural damage after earthquakes has critical importance to drive empirical vulnerability methods. The purpose of this paper is to evaluate the damage distributions based on the data observed in Erzincan-1992, Dinar-1995 and Kocaeli-1999 earthquakes in Turkey utilizing two probability models—Modified Binomial Distribution (MBiD) and Modified Beta Distribution (MBeD). Based on these analyses, it was possible (a) to compare the advantages and limitations of the two probability models with respect to their capabilities in modelling the observed damage distributions; (b) to evaluate the damage assessment for reinforced concrete and masonry buildings in Turkey based on these models; (c) to model the damage distribution of different sub-groups such as buildings with different number of storeys or soil conditions according to the both models. The results indicate that (a) MBeD is more suitable than the MBiD to model the observed damage data for both reinforced concrete and masonry buildings in Turkey; (b) the sub-groups with lower number of stories are located in the lower intensity levels, while the sub-groups with higher number of stories depending on local site condition are concentrated in the higher intensity levels, thus site conditions should also be considered in the assessment of the intensity levels; (c) the detailed local models decrease the uncertainties of loss estimation since the damage distribution of sub-groups can be more accurately modelled compared to the general damage distribution models.  相似文献   

14.

A 6.8-magnitude earthquake that occurred on January 24, 2020, has been effective in Turkey’s eastern regions. The earthquake, with recorded peak ground acceleration (PGA) value of 0.292 g, caused the destruction or heavy damage of buildings, especially in the city center of Elaz?? province. The purpose of this paper was to share the results of detailed investigation in the earthquake-stricken area. Additionally, the causes of damages and failures observed in the buildings were compared to those that had occurred in previous earthquakes in Turkey. In this study, the damages observed in especially RC buildings as well as in masonry and rural buildings were summarized, the lessons learned were evaluated, and the results were interpreted with reference to Turkish earthquake codes. In the study, it was particularly emphasized why the building stock underwent such damage even though the buildings were exposed to earthquake acceleration well below the design acceleration values.

  相似文献   

15.
Earthquake loss estimation of residential buildings in Pakistan   总被引:1,自引:0,他引:1  
Pakistan is an earthquake-prone region due to its tectonic setting resulting in high hazard with moderate-to-strong ground motions and vulnerability of structures and infrastructures, leading to the loss of lives and livelihood, property damage and economic losses. Earthquake-related disaster in Pakistan is a regular and serious threat to the community; however, the country lack tools for earthquake risk reduction through early warning (pre-earthquake planning), rapid response (prompt response at locations of high risk) and pre-financing earthquake risk (property insurance against disaster). This paper presents models for physical damageability assessment and socioeconomic loss estimation of structures in Pakistan for earthquake-induced ground motions, derived using state-of-the-art earthquake loss estimation methodologies. The methodologies are being calibrated with the site-specific materials and structures response, whereas the derived models are tested and validated against recent observed earthquakes in the region. The models can be used to develop damage scenario for earthquakes (assess damaged and collapsed structures, casualties and homeless) and estimate economic losses, i.e., cost of repair and reconstruction (for a single earthquake event as well as all possible earthquakes). The models can provide help on policy- and decision-making toward earthquake risk mitigation and disaster risk reduction in Pakistan.  相似文献   

16.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   

17.
A number of cases where earthquake-induced damage was massive or presented interesting distribution patterns in recent earthquakes are presented.The highly serious damage along reactivated seismic faults and fractures is discussedfor the earthquakes of Pyrgos (Greece), Egio (Greece) and Kobe (Japan). Additionally, we describe characteristic types of building failure in the earthquake of Egio,caused by the coexistence of surficial faulting and liquefaction. Of particularinterest is the damage pattern in the Kobe and Dinar earthquakes, attributed to seismicwave directivity, caused by migration of the earthquake source. Finally, a specialcase of building damage is described for the case of the Adana, Turkey earthquake,which is connected to the shape and the azimuthal location of buildings in respectto the epicentre. All the above cases are valuable sources of information and can be utilizedin the reduction of seismic risk in constructions and urban complexes.  相似文献   

18.
In the very early hours of 26th December 2003, a devastating and strong earthquake with a magnitude of 6.5 struck Bam, one of the historical cities of Kerman province in the south of Iran. According to the official reports, more than 30,000 were killed and about 25,000 injured. More than 80% of the town’s buildings were also destroyed. After the disaster, Bam’s reconstruction management process was presented with a lot of challenges and faced many fundamental questions. The number of human losses and related social issues, extensive destruction of the historical town, and also the lack of good experience in the reconstruction of a city or town made the reconstruction project of Bam more complicated. The reconstruction of Bam was the most important post-disaster reconstruction project among recent reconstructions in Iran. Many factors, such as concern over the government and international agencies, the new managerial approaches, and the application of appropriate reconstruction methods, made it different from the other reconstruction programs. Thus, the post-earthquake reconstruction of Bam is investigated in this research with respect to the importance of this issue. The aim behind this article is to give a brief explanation of the earthquake reconstruction management policies in Bam and also the plans for the reconstruction and rebuilding of urban residential and commercial units.  相似文献   

19.
20.
Using Bayesian networks in analyzing powerful earthquake disaster chains   总被引:2,自引:2,他引:0  
Substantial economic losses, building damage, and loss of life have been caused by secondary disasters that result from strong earthquakes. Earthquake disaster chains occur when secondary disasters take place in sequence. In this paper, we summarize 23 common earthquake disaster chains, whose structures include the serial, parallel, and parallel–serial (dendroid disaster chain) types. Evaluating the probability of powerful earthquake disaster chains is urgently needed for effective disaster prediction and emergency management. To this end, we introduce Bayesian networks (BNs) to assess powerful earthquake disaster chains. The structural graph of a powerful earthquake disaster chain is presented, and the proposed BN modeling method is provided and discussed. BN model of the earthquake–landslides–barrier lakes–floods disaster chain is established. The use of BN shows that such a model enables the effective analysis of earthquake disaster chains. Probability inference reveals that population density, loose debris volume, flooded areas, and landslide dam stability are the most critical links that lead to loss of life in earthquake disaster chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号