首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Earthquake disaster risk assessment and evaluation for Turkey   总被引:3,自引:0,他引:3  
Turkey is the one country in which 90% of the buildings are subject to the risk of earthquake disaster. Recent earthquakes revealed that Turkey’s present residential reinforced-concrete constructions are insufficient in earthquake resistance. Many of the buildings which collapsed or were severely damaged have been rehabilitated by applying simple methods, whose adequacy is questionable. As in Japan and the United States, Turkey’s earthquake assessment studies have increased, especially after earthquakes in 1999, In US, several methodologies and standards, such as Hazard-US (HAZUS) and Applied Technology Council (ATC) 13-20-21 and 156, provide comprehensive earthquake loss estimation methodology for post-earthquake assessment. This paper provides post-earthquake assessment and disaster management for Turkey. The main aim of the post-earthquake assessment discussed is to evaluate loss and estimate damage through disaster management approach. Classification criteria for damage are essential to determine the situation after an earthquake in both the short and long terms. The methodology includes probabilistic-based analysis, which considers the magnitude of Ms ≥ 5.0 earthquakes between 1900 and 2005, for determining the probabilistic seismic hazard for Turkey.  相似文献   

2.
Bakir  P.G. 《Natural Hazards》2004,33(3):405-425
While laboratory and analytical studies can provide valuable information about earthquake hazard mitigation, the most effective educator is the impact of a full-scale earthquake on a full-scale city. The recent earthquakes in Turkey showed that the governmental as well as individual attitudes towards earthquakes did not represent proportionate responses to the risk levels concerned. Turkey had weaknesses in preparing, planning, mitigating and responding to disasters in spite of the known seismic vulnerability of the country. Many steps have been taken after 1999 earthquakes in Turkey, however, the preparations largely concentrate on the response and recovery phases and a fundamental step to reform the current disaster management system and steps to rehabilitate the vulnerable building stock has not been undertaken until today. This would involve changing the present laws and regulations and de-centralising the disaster management system. The aim of this paper is to propose a national mitigation strategy for Turkey for a time-frame of 10 years. The model proposed is a very comprehensive model for earthquake risk reduction in Turkey and within this context, the legislative and technical aspects of mitigation will be discussed in detail. Strategies for mitigating and retrofitting the existing building stock will also be proposed.  相似文献   

3.
Worldwide, earthquakes and related disasters have persistently had severe negative impacts on human livelihoods and have caused widespread socioeconomic and environmental damage. The severity of these disasters has prompted recognition of the need for comprehensive and effective disaster and emergency management (DEM) efforts, which are required to plan, respond to and develop risk mitigation strategies. In this regard, recently developed methods, known as multi-criteria decision analysis (MCDA), have been widely used in DEM domains by emergency managers to greatly improve the quality of the decision-making process, making it more participatory, explicit, rational and efficient. In this study, MCDA techniques of the Analytical Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), integrated with GIS, were used to produce earthquake hazard and risk maps for earthquake disaster monitoring and analysis for a case study region of Küçükçekmece in Istanbul, Turkey. The five main criteria that have the strongest influence on the impact of earthquakes on the study region were determined: topography, distance to epicentre, soil classification, liquefaction and fault/focal mechanism. AHP was used to determine the weights of these parameters, which were also used as input into the TOPSIS method and GIS (ESRI ArcGIS) for simulating these outputs to produce earthquake hazard maps. The resulting earthquake hazard maps created by both the AHP and TOPSIS models were compared, showing high correlation and compatibility. To estimate the elements at risk, population and building data were used with the AHP and TOPSIS hazard maps for potential loss assessment; thus, we demonstrated the potential of integrating GIS with AHP and TOPSIS in generating hazard maps for effective earthquake disaster and risk management.  相似文献   

4.
Catastrophic natural hazards,such as earthquake,pose serious threats to properties and human lives in urban areas.Therefore,earthquake risk assessment(ERA)is indispensable in disaster management.ERA is an integration of the extent of probability and vulnerability of assets.This study develops an integrated model by using the artificial neural network–analytic hierarchy process(ANN–AHP)model for constructing the ERA map.The aim of the study is to quantify urban population risk that may be caused by impending earthquakes.The model is applied to the city of Banda Aceh in Indonesia,a seismically active zone of Aceh province frequently affected by devastating earthquakes.ANN is used for probability mapping,whereas AHP is used to assess urban vulnerability after the hazard map is created with the aid of earthquake intensity variation thematic layering.The risk map is subsequently created by combining the probability,hazard,and vulnerability maps.Then,the risk levels of various zones are obtained.The validation process reveals that the proposed model can map the earthquake probability based on historical events with an accuracy of 84%.Furthermore,results show that the central and southeastern regions of the city have moderate to very high risk classifications,whereas the other parts of the city fall under low to very low earthquake risk classifications.The findings of this research are useful for government agencies and decision makers,particularly in estimating risk dimensions in urban areas and for the future studies to project the preparedness strategies for Banda Aceh.  相似文献   

5.

In this paper, seismic risk scenarios for Bucharest, the capital city of Romania, are proposed and assessed. Bucharest has one of the highest seismic risk levels in Europe, and this is due to a combination of relatively high seismic hazard and a building stock built mainly before the devastating Vrancea 1977 earthquake. In this study, the seismic risk of Bucharest is assessed using the most recent information regarding the characteristics of the residential building stock. The ground motion amplitudes are evaluated starting from random fields obtained by coupling a ground motion model derived for the Vrancea intermediate-depth seismic source with a spatial correlation model. The seismic risk evaluation method applied in this study is based on the well-known macroseismic method. For several structural typologies, the vulnerability parameters are evaluated based on a damage survey performed on 18,000 buildings in Bucharest after the March 1977 earthquake. Subsequently, the risk metrics are compared with those from other studies in the literature that apply a different risk assessment methodology in order to gain a better view of the uncertainties associated with a seismic risk study at city level. Finally, the impact of several Vrancea intermediate-depth earthquake scenarios is evaluated and the results show that the earthquake which has the closest epicenter to Bucharest appears to be the most damaging.

  相似文献   

6.
In this paper, seismic risk scenarios for Bucharest, the capital city of Romania, are proposed and assessed. Bucharest has one of the highest seismic risk levels in Europe, and this is due to a combination of relatively high seismic hazard and a building stock built mainly before the devastating Vrancea 1977 earthquake. In this study, the seismic risk of Bucharest is assessed using the most recent information regarding the characteristics of the residential building stock. The ground motion amplitudes are evaluated starting from random fields obtained by coupling a ground motion model derived for the Vrancea intermediate-depth seismic source with a spatial correlation model. The seismic risk evaluation method applied in this study is based on the well-known macroseismic method. For several structural typologies, the vulnerability parameters are evaluated based on a damage survey performed on 18,000 buildings in Bucharest after the March 1977 earthquake. Subsequently, the risk metrics are compared with those from other studies in the literature that apply a different risk assessment methodology in order to gain a better view of the uncertainties associated with a seismic risk study at city level. Finally, the impact of several Vrancea intermediate-depth earthquake scenarios is evaluated and the results show that the earthquake which has the closest epicenter to Bucharest appears to be the most damaging.  相似文献   

7.
Earthquake prediction is currently the most crucial task required for the probability, hazard, risk mapping, and mitigation purposes. Earthquake prediction attracts the researchers' attention from both academia and industries. Traditionally, the risk assessment approaches have used various traditional and machine learning models. However, deep learning techniques have been rarely tested for earthquake probability mapping. Therefore, this study develops a convolutional neural network (CNN) model for earthquake probability assessment in NE India. Then conducts vulnerability using analytical hierarchy process (AHP), Venn's intersection theory for hazard, and integrated model for risk mapping. A prediction of classification task was performed in which the model predicts magnitudes more than 4 Mw that considers nine indicators. Prediction classification results and intensity variation were then used for probability and hazard mapping, respectively. Finally, earthquake risk map was produced by multiplying hazard, vulnerability, and coping capacity. The vulnerability was prepared by using six vulnerable factors, and the coping capacity was estimated by using the number of hospitals and associated variables, including budget available for disaster management. The CNN model for a probability distribution is a robust technique that provides good accuracy. Results show that CNN is superior to the other algorithms, which completed the classification prediction task with an accuracy of 0.94, precision of 0.98, recall of 0.85, and F1 score of 0.91. These indicators were used for probability mapping, and the total area of hazard (21,412.94 km2), vulnerability (480.98 km2), and risk (34,586.10 km2) was estimated.  相似文献   

8.
肖进  李辉 《工程地质学报》2012,20(4):532-539
汶川地震发生在地质环境脆弱的山区,震后内外地质营力加速了灾区地质环境变迁,在变迁过程中,会出现不同的地质作用和地质灾害.本文通过研究灾区地貌变化、地表破坏、山体震裂、水文地质条件改变、地质灾害发育特征等地质环境现状,分析震后斜坡演化过程、地表地质环境变迁过程、外界因素的影响、崩滑流地质灾害转化关系,总结了地质环境变迁过...  相似文献   

9.
Wang  Zhaohua  Wang  Chen  Yin  Jianhua 《Natural Hazards》2014,73(2):303-315
Urban earthquake disaster prevention is regarded as an integrated systematic engineering. Urban earthquake disaster prevention system is made up of all the earthquake disaster prevention activities. The concept and composition of urban earthquake disaster prevention system periphery were presented based on system periphery theory. A seismic risk-control mechanism model of system periphery was deduced using exchange rate of periphery as a dependent variable, and an observability–controllability model of system periphery was established and crystallized in its application to the quantitative analysis of practice problem. The input sets of urban earthquake disaster prevention system are determined as the maximum earthquake magnitude happened in or around the city, the measurable earthquake frequency, population density and fixed assets density. The inside state sets of urban earthquake disaster prevention system are determined as disaster resistant ability of buildings, disaster resistant ability of lifelines and investment dynamics in disaster prevention per urban built-up area. The system output is urban seismic risk. The calculative results show the model presented in this study can analyze the influence of system periphery intensity and inside state on seismic risk and can control urban seismic risk by adjusting the parameters of system periphery, the system inside state and human influence intensity.  相似文献   

10.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2003,30(1):25-41
This is the second part of our study on the assessment of seismic hazard and seismic risk for Tulbagh, the settlement, located about 90 km N-E from Cape Town, where the strongest and most damaging earthquake known in the existing earthquake history of South Africa took place. This part of our study, which can be read independently from Part I, concentrates on the probabilistic seismic risk analysis (PSRA) forTulbagh. The work begins with an introduction and a historical perspective on the estimation of seismic damage to buildings. The methodology for the estimation of expected damage from a probabilistic point of view is then presented. The work closes with an application of the described methodology to a site in the vicinity of Tulbagh.  相似文献   

11.
Regional waterlog disaster integrated risk system, affected by natural, social, and economic systems and its combination relationship, is a complex system with certain structure and function. Waterlog disaster integrated risk results from the combined effects of regional environment, impact factors, vulnerability, and disaster-reducing capability of flood hazards in the drainage area. Waterlog disaster integrated risk system can be divided into four subsystems of hazard, vulnerability, disaster-reducing capability, and disaster conditions. Evaluation indexes are selected using fuzzy analytic hierarchy process method, and the evaluation index system is established. Then, the waterlog disaster integrated risk evaluation model is proposed based on set pair analysis method. Taking Huaihe river in Anhui Province of China as the typical area in this study, the results show that the proposed approach is able to obtain the spatial distribution characteristics of waterlog hazard, vulnerability, mitigation capabilities, and integrated disaster risk within the study area. From the quantitative point of view, identification of the areas with high flood risk can provide a scientific basis for the flood management and technical support.  相似文献   

12.
Both seismic and tsunami hazards design criteria are essential input to the rehabilitation and long-term development of city of Banda Aceh Post Sumatra 2004 (M w=9.3) disaster. A case study to develop design criteria for future disaster mitigation of the area is presented. The pilot study consists of probabilistic seismic and tsunami hazard analysis. Results of the probabilistic seismic hazard analysis indicates that peak ground acceleration at baserock for 10 and 2% probability of exceedance in 50 years is 0.3 and 0.55 g, respectively. The analysis also provides spectral values at short (T=0.2 s) and long period (T=1.0 s) motions. Some non-linear time-domain earthquake response analyses for soft, medium, and hard site-class were conducted to recommend design response spectra for each site-class. In addition, tsunami inundation maps generated from probabilistic tsunami hazard analysis were developed through tsunami wave propagation analysis and run-up numerical modeling associated with its probability of tsunamigenic earthquake source potential. Both the seismic and tsunami hazard curve and design criteria are recommended as contribution of this study for design criteria, as part of the disaster mitigation effort in the development process of the city. The methodology developed herein could be applied to other seismic and tsunami disaster potential areas.  相似文献   

13.
The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquake-induced landslides and land planning.  相似文献   

14.
Jin  Ju-Liang  Fu  Juan  Wei  Yi-Ming  Jiang  Shang-Ming  Zhou  Yu-Liang  Liu  Li  Wang  You-Zhen  Wu  Cheng-Guo 《Natural Hazards》2014,75(2):155-178

Regional waterlog disaster integrated risk system, affected by natural, social, and economic systems and its combination relationship, is a complex system with certain structure and function. Waterlog disaster integrated risk results from the combined effects of regional environment, impact factors, vulnerability, and disaster-reducing capability of flood hazards in the drainage area. Waterlog disaster integrated risk system can be divided into four subsystems of hazard, vulnerability, disaster-reducing capability, and disaster conditions. Evaluation indexes are selected using fuzzy analytic hierarchy process method, and the evaluation index system is established. Then, the waterlog disaster integrated risk evaluation model is proposed based on set pair analysis method. Taking Huaihe river in Anhui Province of China as the typical area in this study, the results show that the proposed approach is able to obtain the spatial distribution characteristics of waterlog hazard, vulnerability, mitigation capabilities, and integrated disaster risk within the study area. From the quantitative point of view, identification of the areas with high flood risk can provide a scientific basis for the flood management and technical support.

  相似文献   

15.
An earthquake is a natural phenomenon which is very frequent in Himalayan region in India. In southern peninsula India, the spatial occurrence of earthquake is irregular, whereas the northeastern, the north and the northwestern Himalayan parts of India are subjected to regular occurrences of earthquakes as they mark the boundary of the Eurasian and the Indian Plate. Hence, it is important to study and develop spatial model and information tool to understand the seismic phenomenon. The geoinformatic technique plays a significant role in the analysis of geodatabase to study the natural disaster and hazard assessment. The main aim of the present study is to develop geospatial model based on earthquake hazard assessment tool (EaHaAsTo) through integrated geological and geoinformatic techniques to better understand the earthquake occurrences zones. The spatial and non-spatial data were collected and integrated in a GIS to prepare geospatial databases. The thematic and quantitative databases were generated, and analysis was carried out to understand the seismic characteristics of the study area. The geospatial model was developed by integrating thematic databases and geospatial analyzed using weighted linear combination method. Finally, the GIS based on customized EaHaAsTo was developed to visualize the output of the model in qualitative and quantitative forms.  相似文献   

16.
滑坡堰塞湖是山区常见的一种自然灾害, 对其溃决风险与过程的科学认知和合理评估是应急处置的关键。外荷载作用下滑坡堰塞体的力学响应、滑坡堰塞湖渐进破坏机理与溃决洪水预测理论是滑坡堰塞湖风险评估研究领域的关键科学问题。本文围绕滑坡堰塞湖形成后的溃决风险与过程展开综述, 从定性和定量的角度分别对堰塞湖危险性评价方法进行分析总结, 从小尺度、大尺度和超重力场试验技术的角度总结了堰塞湖的溃决机理、溃决过程及其影响因素, 从数学方法的角度对堰塞湖溃决洪水预测中经验公式法、简化和精细化数值模拟方法的进展进行总结评价。然而, 国内外关于滑坡堰塞湖风险评估领域的研究仍处于起步阶段, 空-天-地一体化监测技术、堰塞湖危险性评价中的不确定性问题、堰塞体材料冲蚀特性与溃决机理、堰塞湖溃决洪水精细化模拟等将是未来的重点研究方向。本综述可为堰塞湖防灾减灾和流域水工程风险管理提供有价值的参考。  相似文献   

17.
This study presents a methodology for risk analysis, assessment, combination, and regionalization of integrated drought and waterlogging disasters in Anhui Province, which is supported by geographical information systems (GIS) and technique of natural disaster risk assessment from the viewpoints of climatology, geography, disaster science, environmental science, and so on. Along with the global warming, the occurrences of water-related disasters become more frequent and serious. It is necessary to determine the mode of spatial distribution of water-related disaster risk. Based on the principle of natural disaster risk, natural conditions, and socioeconomic situation, drought and waterlogging disaster risk index, which combined hazard, exposure, vulnerability, and restorability, was developed by using combined weights, entropy, and fuzzy comprehensive evaluation method. Drought and waterlogging disaster risk zoning map was made out by using GIS spatial analysis technique and gridding GIS technique. It was used for comparing the relative risk of economic and life losses in different grids of Anhui Province. It can also be used to compare the situation of different levels of drought and waterlogging disaster combination risk in a similar place. The result shows that the northwestern and central parts of Anhui Province possess higher risk, while the southwestern and northeastern parts possess lower risk. The information obtained from statistical offices and remote sensing data in relation to results compiled were statistically evaluated. The results obtained from this study are specifically intended to support local and national governmental agencies on water-related disaster management.  相似文献   

18.
This study presents the methodology and procedure for risk assessment of flood disasters in central Liaoning Province, which was supported by geographical information systems (GIS) and technology of natural disaster risk assessment. On the basis of the standard formulation of natural disaster risk and flood disaster risk index, of which weights were developed using combined weights of entropy, the relative membership degree functions of variable fuzzy set (VFS) theory were calculated using improved set pair analysis, while level values were calculated using VFSs, including hazard levels, exposure levels, vulnerability levels and restorability levels, and the flood risk level for each assessment unit was obtained using the natural disaster index method. Consequently, integrated flood risk map was carried out by GIS spatial analysis technique. The results show that the southwestern and central parts of the study area possess higher risk, while the northwestern and southeastern parts possess lower risk. The results got by the assessment model fits the area of historical flood data; this study offer new insights and possibility to carry out an efficient way for flood disaster prevention and mitigation. The study also provides scientific reference in flood risk management for local and national governmental agencies.  相似文献   

19.
洪水灾害风险管理广义熵智能分析的理论框架   总被引:4,自引:0,他引:4       下载免费PDF全文
基于洪水灾害风险管理的背景分析,提出用广义分布函数及其广义熵理论统一描述、物理解析洪水灾害风险管理系统的各种不确定性信息。基于洪水灾害风险形成机制和风险管理理论与水利科学、信息科学、智能科学综合集成途径,提出由洪水灾害孕灾环境和致灾因子危险性广义熵智能分析、承灾体易损性广义熵智能分析、承灾体灾情广义熵智能分析和风险决策广义熵智能分析组成的洪水灾害风险管理广义熵智能分析的初步理论框架及其主要研究内容,在其它灾害风险管理中具有一定的参考应用价值。  相似文献   

20.
The Indian subcontinent is characterized by various tectonic units viz., Himalayan collision zone in North, Indo-Burmese arc in north-east, failed rift zones in its interior in Peninsular Indian shield and Andaman Sumatra trench in south-east Indian Territory. During the last about 100 years, the country has witnessed four great and several major earthquakes. Soon after the occurrence of the first great earthquake, the Shillong earthquake (M w: 8.1) in 1897, efforts were started to assess the seismic hazard in the country. The first such attempt was made by Geological Survey of India in 1898 and since then considerable progress has been made. The current seismic zonation map prepared and published by Bureau of Indian Standards, broadly places seismic risk in different parts of the country in four major zones. However, this map is not sufficient for the assessment of area-specific seismic risks, necessitating detailed seismic zoning, that is, microzonation for earthquake disaster mitigation and management. Recently, seismic microzonation studies are being introduced in India, and the first level seismic microzonation has already been completed for selected urban centres including, Jabalpur, Guwahati, Delhi, Bangalore, Ahmadabad, Dehradun, etc. The maps prepared for these cities are being further refined on larger scales as per the requirements, and a plan has also been firmed up for taking up microzonation of 30 selected cities, which lie in seismic zones V and IV and have a population density of half a million. The paper highlights the efforts made in India so far towards seismic hazard assessment as well as the future road map for such studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号