首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free inertia-gravity internal waves are considered in a two-dimensional vertically nonuniform flow in the Boussinesq approximation. The equation for vertical velocity amplitude includes complex factors caused by the gradient of the flow velocity component transverse to the wave-propagation direction; therefore, the eigenfunction and wave frequency are complex. It is shown that the decrement of damping (imaginary correction to the frequency) of 15-min internal waves is two orders of magnitude smaller than the wave frequency; i.e., the waves weakly damp. Vertical wave fluxes of heat and salt are nonzero due to the phase shift between fluctuations of the vertical velocity and temperature (salinity) different from π 2. The vertical component of the Stokes drift speed is also nonzero and contributed into the vertical transport.  相似文献   

2.
The method of asymptotic multiscale expansion is applied to determine the mean current velocity and density fields induced by a packet of internal waves. In the limiting case of a weakly non-linear plane wave, heat, salt, and impulse vertical transport is conditioned by the vertical component of the Stokes drift velocity, which is non-zero, when turbulent viscosity and diffusion are considered. As the wave period decreases, the wave fluxes of heat, salt, and impulse increase. In shallow waters, these fluxes become more vigorous and may be comparable to the respective turbulent flows or even to be more powerful. Translated by Vladimir A. Puchkin.  相似文献   

3.
In the Boussinesq approximation, we study the nonlinear effects observed in the process of propagation of internal waves in the presence of turbulence. The space damping factor of the waves is evaluated. The Stokes drift velocity and the Euler velocity of the mean current induced by waves due to the presence of nonlinearity are determined. It is shown that the principal contribution to the wave transfer is made by the horizontal velocity of the induced current. The Stokes drift is significant only near the bottom. The vertical component of the Stokes drift velocity obtained with regard for the turbulent viscosity is nonzero.  相似文献   

4.
基于Jenkins(1989)建立的包含Stokes漂流、风输入和波耗散影响的修正Ekman模型,采用Paskyabi等(2012)使用的推广的Donelan等(1987)中的谱和波耗散函数,并利用Paskyabi等(2012)中修正方法给出的包含高频波的风输入函数,在粘性不依赖于水深及粘性随深度线性变化的条件下,研究了包含高频毛细重力波的随机表面波对Stokes漂流和Song(2009)导出的波浪修正定常Ekman流解的影响。结果表明高频表面波使Stokes漂流在海表面剪切加强,对定常Ekamn流解的影响通常不能忽略,但对Ekman流场的角度偏转影响很小。最后,将考虑高频表面波尾谱影响所估算的定常Ekman流解与已有观测结果以及经典Ekman解进行了比对分析。  相似文献   

5.
Diabatic-circulation diagnostics with the use of the distributions of heating rates and potential temperature requires that, in each particular case, a special and ambiguously defined correction to the stream function be introduced to turn a globally averaged vertical velocity to zero at any isobaric level. Up to now, the physical nature of this correction has been little explained and it has been usually written in a form that has not been substantiated to a sufficient extent. In this paper, this correction and its uncertainty are related to the eddy term, which is usually neglected in the concept of diabatic velocities. The decomposition of wave fluxes into advective and diffusion components is not unique. As a result, one can formulate a variational problem of minimizing the diffusion component of the wave flux and, thus, the problem of finding advective velocities, which involve the maximum of eddy-induced advection. A unique solution of this problem is obtained, and the relation of the solution to the “standard” diabatic circulation is studied. It is shown that, in the approximation of quasi-horizontal isentropes, the generalized diabatic stream function is identical with the “standard“ stream function. This result partially justifies the correction that is commonly used in calculations of the diabatic circulation.  相似文献   

6.
Spilled oil floats and travels across the water’s surface under the influence of wind, currents, and wave action. Wave-induced Stokes drift is an important physical process that can affect surface water particles but that is currently absent from oil spill analyses. In this study, two methods are applied to determine the velocity of Stokes drift, the first calculates velocity from the wind-related formula based upon a one-dimensional frequency spectrum, while the second determines velocity directly from the wave model that was based on a two-dimensional spectrum. The experimental results of numerous models indicated that: (1) oil simulations that include the influence of Stokes drift are more accurate than that those do not; (2) for medium and long-term simulations longer than two days or more, Stokes drift is a significant factor that should not be ignored, and its magnitude can reach about 2% of the wind speed; (3) the velocity of Stokes drift is related to the wind but is not linear. Therefore, Stokes drift cannot simply be replaced or substituted by simply increasing the wind drift factor, which can cause errors in oil spill projections; (4) the Stokes drift velocity obtained from the two-dimensional wave spectrum makes the oil spill simulation more accurate.  相似文献   

7.
《Coastal Engineering》2006,53(10):825-843
A newly developed two-phase flow model was applied to simulate the sediment movement under 2nd-order Stokes wave sheetflow conditions with different sediment sizes and wave periods. As for the distribution of eddy viscosity and sediment diffusion coefficient, the difference between onshore and offshore phases was considered by using an equivalent sinusoidal velocity amplitude for the asymmetric velocity profile. Sophisticated comparisons between laboratory measurements [O'Donoghue, T., Wright, S., 2004b. Flow tunnel measurements of velocities and sand flux in oscillatory sheetflow for well-sorted and graded sands. Coast. Eng., 51 (11–12), 1163–1184.] and the present numerical simulation were performed for sediment concentration, sediment velocity, sand flux and net transport rate. Four existing engineering models, together with the present two-phase flow model, were introduced for net transport rate prediction. Taking both the net sand transport rate magnitude and direction into account, the present process-based two-phase flow model provided the best estimations, which can simulate both the onshore net transport for medium/coarse sand cases and offshore net transport for fine sand cases with the agreement by a factor of 2 for almost all the considered cases.  相似文献   

8.
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42, 134–149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313–351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313–351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971–5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift.  相似文献   

9.
An analytical theory which describes the motion in a turbulent wave boundary layer near a rough sea bottom by using a two-layer time invariant eddy viscosity model is presented. The eddy viscosity in the inner layer increases quadratically with the height above the sea bottom. In the outer layer the eddy viscosity is taken as a constant. The mean velocity and shear stress profiles, the bottom shear stress and the bottom friction coefficient are presented, and comparisons are made with experimental results.  相似文献   

10.
利用海浪模式WWIII(Wave Watch III)2008年的模拟结果对海面Stokes漂流、Stokes输运、Stokes深度以及全球Langmuir数的年平均分布特征和季节平均分布特征分别进行了详细的研究与分析。结果表明,海面Stokes漂流和Stokes输运均呈现高纬度偏大的特征,以南极绕极流海域最为突出。全球大部分海域Stokes漂流影响深度在20 m以内,呈现大洋东部偏大,西部偏小的分布特征。全球大部分海域的混合作用是剪切不稳定性和Langmuir湍效应并存的状态,甚至有些海域是以Langmuir湍效应为主。因此,在进行大尺度的海洋数值模拟时,应该考虑波浪导致的混合效应。  相似文献   

11.
Large Eddy Simulation for Wave Breaking in the Surf Zone   总被引:1,自引:0,他引:1  
In this paper, (he large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads lo the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the surf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale mode! is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this pape  相似文献   

12.
This study investigates experimentally the drift velocity of an elliptical surface film advected by deep-water waves. Thin polyethylene sheets were used to simulate the inextensible surface film. The drift velocities were obtained by recording and analyzing a sequence of images captured using a video camera. The results show that the drift velocity increases with the longitudinal length of the polyethylene sheet until approximately 0.8 times the wavelength. Beyond that, further increment would not result in substantial increase in the drift velocity. The effect due to the normalized transverse width is found to be significant within a particular range. At large wave steepness, the drift velocity appears to be limited by the Stokes drift. A set of best-fit empirical equations based on the sigmoidal function is introduced for oil spill trajectory prediction.  相似文献   

13.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   

14.
A quasi-linear model for determining the aerodynamic drag coefficient of the sea surface and the growth rate of surface waves under a hurricane wind is proposed. The model explains the reduction (stabilization) in the drag coefficient during hurricane winds. This model is based on the solution of the Reynolds equations in curvilinear coordinates with the use of the approximation of the eddy viscosity, which takes into account the presence of the viscous sublayer. The profile of the mean wind velocity is found with consideration for nonlinear wave stresses (wave momentum flux), whereas wave disturbances induced in air by waves on the water surface are determined in the context of linear equations. The model is verified by comparing the calculation results with experimental data for a wide range of wind velocities. The growth rate and drag coefficient for hurricane winds are calculated both with and without consideration for the shortwave portion of the windwave spectrum. On the basis of calculations with the quasi-linear model, a simple parametrization is proposed for the drag coefficient and the growth rate of surface waves during hurricane winds. This model is convenient for use in models of forecasting winds and waves.  相似文献   

15.
In this study,characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical twodimensional model are Reynolds Averaged Navier Stokes equations. The Reynolds stress terms are closed by a nonlinear k ε turbulence transportation model. The free surface is traced through the PILC-VOF method. The proposed numerical model is verified with experimental results. The numerical result shows that the wave profile may become more asymmetrical when wave propa-gates over breakwater. When wave crest propagates over breakwater,the anticlockwise vortex may generate. On the contrary,when wave hollow propagates over breakwater,the clockwise vortex may generate. Meanwhile,the influenced zone of vortex created by wave crest is larger than that created by wave hollow. All the maximum values of the turbulent kinetic energy,turbulent dissi-pation and eddy viscosity occur on the top of breakwater. Both the turbulent dissipation and eddy viscosity increase as the turbulent kinetic energy increases. Wave energy may rapidly decrease near the breakwater because turbulent dissipation increases and energy in lower harmonics is transferred into higher harmonics.  相似文献   

16.
We introduced the Coupled Model Intercomparison Project Phase 6 (CMIP6) Ocean Model Intercomparison Project CORE2-forced (OMIP-1) experiment by using the First Institute of Oceanography Earth System Model version 2.0 (FIO-ESM v2.0), and comprehensively evaluated the simulation results. Unlike other OMIP models, FIO-ESM v2.0 includes a coupled ocean surface wave component model that takes into account non-breaking surface wave-induced vertical mixing in the ocean and effect of surface wave Stokes drift on air-sea momentum and heat fluxes in the climate system. A sub-layer sea surface temperature (SST) diurnal cycle parameterization was also employed to take into account effect of SST diurnal cycle on air-sea heat ?uxes to improve simulations of air-sea interactions. Evaluations show that mean values and long-term trends of significant wave height were adequately reproduced in the FIO-ESM v2.0 OMIP-1 simulations, and there is a reasonable fit between the SST diurnal cycle obtained from in situ observations and that parameterized by FIO-ESM v2.0. Evaluations of model drift, temperature, salinity, mixed layer depth, and the Atlantic Meridional Overturning Circulation show that the model performs well in the FIO-ESM v2.0 OMIP-1 simulation. However, the summer sea ice extent of the Arctic and Antarctic is underestimated.  相似文献   

17.
漂浮于自由水面的污染物的的迁移、扩散会受到天然随机海浪的影响。之前的研究(以Herterich和Hasselmann(1982)为代表)普遍认为,随机波浪作用下的斯托克司漂移速度会引起水面污染物的离散,这个离散甚至有可能跟风和海流引起的离散同一量级。本研究就随机波浪作用下的斯托克司漂移速度是否会引起水面漂移物的离散进行理论和试验探讨。从理论推导可知,随机波浪下的质量输移速度是个定常分量,因此它不会随时间变化而引起水面漂移物的离散。随后我们在实验室水槽中进行了漂移物在随机波浪(P-M谱)作用下的漂移过程的测量。试验结果也印证了随机波浪作用下的斯托克司漂移速度不会引起水面漂移物离散的结论。  相似文献   

18.
Simple numerical experiments on two-dimensional coastal upwelling are made with emphasis on the role of non-geostrophic solenoidal field of density in the formation of double-celled circulation and multi-celled density front. Geometry of shelf and slope is not taken into account. Existence of poleward undercurrent presumably caused by the longshore variation of the large scale pressure field is also suppressed for the sake of simplicity.The results are, (1) double-celled circulation revealed in the present experiment is closely related with the internal frictional layer, where the horizontal density gradient balances with the vertical gradient of the longshore velocity and the vertical diffusion of the vorticity. (2) density front formed by the emergence of the pycnocline to the sea surface is successively advected offshoreward by the Ekman transport. (3) the pycnocline intersecting the sea surface forms the density front which is nearly vertical on account of the small scale convection. The surface currents converge at the front and construct an anti-clockwise circulation (viewed from the lee side). (4) small coefficient of eddy viscosity and strong wind stress lead the Ekman transport unstable and form a multi-celled structure in the frontal region.  相似文献   

19.
It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.  相似文献   

20.
The paper provides a simple analytical tool which can be used to give estimates of the mean value and the standard deviation of the Stokes drift for sea states. This is achieved by providing bivariate distributions of significant wave height with surface Stokes drift as well as with volume Stokes transport. These Stokes drift parameters are defined in terms of significant wave height and characteristic wave periods. Also bivariate distributions of spectral peak period and these two Stokes drift parameters are provided. The paper presents statistical aspects of the Stokes drift parameters, such as the conditional expected values and the conditional variances for given significant wave height, as well as examples of results corresponding to typical field conditions. The present analytical results can be used to make assessment of Stokes drift based on e.g. global wave statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号