首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hizeh-Jan kaolin deposit(northwest of Varzeghan, East-Azarbaidjan Province, NW Iran) is a product of the alteration of Eocene andesitic rocks. Based on mineralogical examinations, kaolinite, quartz, smectite, pyrophyllite, muscovite-illite, alunite, calcite, diaspore, goethite and hematite are the most abundant mineral phases in this deposit. The geochemical indicators, such as Y/Ho and Zr/Hf, indicate the non-CHARAC(non-Charge-radius control) behavior of these pairs, which are likely to be due to the occurrence of the tetrad effect phenomenon in this deposit. Simultaneous concave and convex shapes in the chondrite-normalized REE distribution patterns are a remarkable feature of the kaolin samples. Bivariate diagrams of the size of the third tetrad effect(T_3) versus geochemical parameters such as Y/Ho, Nb/Ta and Zr/Hf ratios display two distinct populations for the kaolin samples. The first population is characterized by high T_3 values(>0.13), which are near or on the fault zone. The second population is characterized by low T_3 values(<0.13), and are farther from the fault zone. The obtained results from the geochemical data have furnished compelling evidence that fluidrock interaction, overprint of hypogene processes by supergene ones, and structural control, are key controlling factors for the occurrence of tetrad effects in REE distribution patterns in the Hizeh-Jan kaolin deposit.  相似文献   

2.
岛弧环境斑岩铜矿蚀变分带模式已为人们所熟知 ,但碰撞造山环境的斑岩铜矿蚀变分带特征尚不清楚。对此 ,文中以西藏冈底斯斑岩铜矿带为例 ,选择驱龙、冲江、厅宫 3个典型斑岩铜矿 ,对其蚀变系统进行了系统研究。依据蚀变矿物组合可分为 3个蚀变带 ,呈环带状分布。从中心向外依次为钾硅酸盐化带、石英绢云母化带、青磐岩化带。泥化带不太发育 ,通常叠加在其它蚀变带之上。钾硅酸盐化带主要蚀变矿物为钾长石、黑云母、石英、硬石膏 ,伴有大量的黄铜矿与辉钼矿 ,是成矿物质的主要堆积区。石英绢云母化带与钾硅酸盐化带渐变过渡或叠加其上 ,是次于钾硅酸盐化带的储矿部位。蚀变矿物组合为绢云母 +石英 +钾长石 ,金属硫化物有黄铁矿、黄铜矿、辉钼矿、斑铜矿 ,少量的方铅矿、闪锌矿。主要的辉钼矿以石英 +辉钼矿脉的形式出现于本矿带。青磐岩化在斑岩体内不发育 ,矿化极微弱。蚀变岩石组分分析表明 ,岩石蚀变及其分带是岩浆流体 /岩石反应时K ,Na ,Ca ,Mg等组分迁移的结果 ,矿化伴随着蚀变发生。钾硅酸盐化带、石英绢云母化带和青磐岩化带的蚀变岩石与未 (弱 )蚀变斑岩具有一致的稀土配分模式 ,REE含量有规律地变化 ,说明蚀变岩石均经历了源于岩浆的流体的交代 ,不同的蚀变形成于岩浆流体演化的不同阶段。蚀?  相似文献   

3.
The Duobuza gold‐rich porphyry copper district is located in the Bangongco metallogenetic belt in the Bangongco‐Nujiang suture zone south of the Qiangtang terrane. Two main gold‐rich porphyry copper deposits (Duobuza and Bolong) and an occurrence (135 Line) were discovered in the district. The porphyry‐type mineralization is associated with three Early Cretaceous ore‐bearing granodiorite porphyries at Duobuza, 135 Line and Bolong, and is hosted by volcanic and sedimentary rocks of the Middle Jurassic Yanshiping Formation and intermediate‐acidic volcanic rocks of the Early Cretaceous Meiriqie Group. Simultaneous emplacement and isometric distribution of three ore‐forming porphyries is explained as multi‐centered mineralization generated from the same magma chamber. Intense hydrothermal alteration occurs in the porphyries and at the contact zone with wall rocks. Four main hypogene alteration zones are distinguished at Duobuza. Early‐stage alteration is dominated by potassic alteration with extensive secondary biotite, K‐feldspar and magnetite. The alteration zone includes dense magnetite and quartz‐magnetite veinlets, in which Cu‐Fe‐bearing sulfides are present. Propylitic alteration occurs in the host basic volcanic rocks. Extensive chloritization‐silicification with quartz‐chalcopyrite or quartz‐molybdenite veinlets superimposes on the potassic alteration. Final‐stage argillic alteration overlaps on all the earlier alteration. This alteration stage is characterized by destruction of feldspar to form illite, dickite and kaolinite, with accompanying veinlets of quartz + chalcopyrite + pyrite and quartz + pyrite assemblages. Cu coexists with Au, which indicates their simultaneous precipitation. Mass balance calculations show that ore‐forming elements are strongly enriched during the above‐mentioned three alteration stages.  相似文献   

4.
为了研究鄂尔多斯盆地东胜砂岩型铀矿成矿水化学过程,利用光薄片、电子探针、X射线衍射、扫描电镜和化学分析等方法对比分析了氧化带无矿化样品、氧化还原过渡带中低矿化及高铀样品的矿物学和地球化学特征。矿物学研究表明:①所有样品中斜长石均表现出强烈粘土化和绢云母化的特征;②铀矿物主要为铀石,呈胶状吸附在矿物颗粒(部分为炭屑)表面、粒间或裂隙中;③相对氧化带,氧化还原过渡带往往含有更多的炭屑和碳酸盐胶结物。稀土元素地球化学研究表明,氧化带无矿化样品和过渡带低矿化样品表现出较平坦的低分异的稀土配分模式;而过渡带高铀含炭屑样品表现出MREE富集的配分模式,高铀富碳酸盐胶结物的样品表现出轻稀土强烈左倾、重稀土平坦的配分模式。对比分析上述差异后认为,铀成矿与水化学作用密切相关,且成矿水溶液中无机络阴离子以CO32-为主,倾向于络合UO22+和HRE3+;而阳离子主要为斜长石的粘土化释放的Ca2+和SiO44-。当水溶液从盆地边缘向中心运移时,物化环境从氧化及酸性环境向还原及碱性环境转变,此时发生铀酰离子的还原并与SiO44-沉淀形成铀石、Ca2+与CO32-沉淀形成碳酸盐以及HREE的沉淀富集。  相似文献   

5.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

6.
Lanthanide tetrad effects are often observed in REE patterns of more highly evolved Variscan peraluminous granites of mid-eastern Germany (Central Erzgebirge, Western Erzgebirge, Fichtelgebirge, and Northern Oberpfalz). The degree of the tetrad effect (TE1,3) is estimated and plotted vs. K/Rb, Sr/Eu, Eu/Eu1, Y/Ho, and Zr/Hf. The diagrams reveal that the tetrad effect develops parallel to granite evolution, and significant tetrad effects are strictly confined to highly differentiated samples. Mineral fractionation as a cause for the tetrad effect is not supported by a calculated Rayleigh fractionation, which also could not explain the fractionation trends of Sr/Eu and Eu/Eu1. The strong decrease of Eu concentrations in highly evolved rocks suggests that Eu fractionates between the residual melt and a coexisting aqueous high-temperature fluid. Mineral fractionation as a reason for the tetrad effect is even more unlikely as REE patterns of accessory minerals display similar tetrad effects as the respective host rocks. The accessory minerals inherit the REE signature of the melt and do not contribute to the bulk-rock tetrad effect via mineral fractionation. These results point in summary to significant changes of element fractionation behavior in highly evolved granitic melts: ionic radius and charge, which commonly control the element distribution between mineral and melt, are no longer the exclusive control. The tetrad effect and the highly fractionated trace element ratios of Y/Ho and Zr/Hf indicate a trace element behavior that is similar to that in aqueous systems in which chemical complexation is of significant influence. This distinct trace element behavior and the common features of magmatic-hydrothermal alteration suggest the increasing importance of an aqueous-like fluid system during the final stages of granite crystallization. The positive correlation of TE1,3 with bulk-rock fluorine contents hints at the importance of REE fluorine complexation in generating the tetrad effect. As the evolution of a REE pattern with tetrad effect (M-type) implies the removal of a respective mirroring REE pattern (W-type), the tetrad effect identifies open system conditions during granite crystallization.  相似文献   

7.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

8.
岗岔—克莫金矿区位于西秦岭北缘夏河—合作成矿带,具浅成低温热液型矿床特征,初步显示深部可能具有斑岩成矿系统存在。利用短波红外光谱矿物分析技术对岗岔—克莫金矿区蚀变岩特征的研究表明,矿区内发育的蚀变矿物主要有白云母、伊利石、蒙脱石、高岭石、地开石、绿泥石、绿帘石和次生石英等。近矿蚀变类型主要为绢英岩化。矿区内以下家门沟口为中心向外依次发育了中心带(绢英岩化带)、过渡带(泥化带)和外围带(青磐岩化带)。此外,伊利石结晶度以下家门沟口为中心向外具有明显的降低趋势。研究结果指示下家门沟口可能是矿区的热液活动中心。  相似文献   

9.
Behaviour of rare earth elements in geothermal systems of New Zealand   总被引:2,自引:0,他引:2  
Rare earth element (REE) patterns of hydrothermally altered rhyolite from geothermal systems located in the Taupo Volcanic Zone in the North Island of New Zealand provide evidence of REE mobility. REE trends of unaltered rhyolites are characterised by moderate LREE enrichment ((La/Lu)cn = 3.84 to 5.62) and pronounced negative Eu anomalies. In contrast, REE patterns of hydrothermally altered rhyolites commonly exhibit different signatures and may be placed into four chemically and petrographically distinct categories. Rocks with clay + quartz + feldspar + calcite (±zeolites, epidote, sphene, chlorite, opaque minerals) assemblages typically display patterns subparallel to fresh rock, whereas, samples which contain quartz + chlorite, or quartz + clay + zeolite assemblages have flat patterns without Eu anomalies, and highly silicified samples are characterised by depleted, bowed REE trends. These patterns may be produced by interaction with alkaline or acid fluids. A fourth group of very intensely altered samples, affected by interaction with acid fluids, exhibits unusual REE trends with highly enriched HREE and depleted LREE, or depleted HREE.These results indicate that some of the REE released by the breakdown of primary phases during alteration are transported away in the fluid. In addition, the degree of depletion is positively correlated with alteration intensity and the fluid/rock ratio. The similarity of REE patterns resulting from alteration by alkaline and acid fluids suggests that the shape of the REE trends is controlled principally by fluid/rock ratios and secondarily by mineralogy. The REE are retained in rocks with a diverse alteration mineralogy, whereas in samples with only one dominant alteration phase (e.g. quartz) it is more probable that not all REE liberated during alteration can be accommodated in the altered rock. Eu commonly behaves differently from the other REE, possibly due to the dominance of Eu2+.  相似文献   

10.
Abstract: The Milyang pyrophyllite deposit, which is embedded in the Late Cretaceous Yuchon Group of the Kyongsang Supergroup, is one of the largest hydrothermal clay deposits in the Kyongsang basin, southeast Korea. Host rocks of the deposit are porphyritic andesite lava and minor andesitic lapilli tuff. In the Milyang district, a hydrothermally altered zone is about 2 × 3 km in extent; we can recognize the concentric arrangement of advanced argillic, propylitic, and sericitic alteration zones from the central to peripheral parts of the zone. The Milyang pyrophyllite deposit forms a part of the advanced argillic alteration zone. The Milyang pyrophyllite deposit is subdivided into the following four zones based on mineral assemblages: the pyrophyllite zones 1, 2, 3, and the silicified zone. The pyrophyllite zone 1, which occupies the central part of the deposit, comprises mainly pyrophyllite, kaolinite, and diaspore without quartz. Diaspore nodules often concentrate in beds 40–50 cm thick. Andalusite, dumortierite, and tourmaline locally occur as network veins, crack‐filler, or small spherulitic spots. The Al2O3 content of the ore ranges from 27 to 36 wt%. The pyrophyllite zone 2, which constitutes a major part of the deposit, comprises mainly pyrophyllite, kaolinite, and quartz. The Al2O3 content of the ore ranges from 15 to 24 wt%. The pyro‐phyllite zone 3 is the hematite‐rich marginal facies of the deposit. The silicified zone, which occurs as beds and septa, is mostly composed of quartz with minor pyrophyllite and kaolinite; the SiO2 contents range from 79 to 90 wt%. Comparing chemical compositions of the high‐Al ores with those of unaltered host andesite, the Fe, Ca, alkalis, HFSE, and HREE contents are significantly depleted, whereas S, B, As, Sr, and LREE are enriched. The hydrothermal alteration of the Milyang pyrophyllite deposit can be classified into the following four stages: 1) extensive sericitic and propylitic alteration, 2) medium‐temperature (200–250°C) advanced argillic alteration, 3) high‐temperature (250–350°C or more) advanced argillic alteration, and 4) retrograde low‐temperature alteration. The heat and some volatile components such as B and S would be derived from the Pulguksa Granite intruded underneath the deposit.  相似文献   

11.
诸广-下庄铀矿集区是我国最大的花岗岩型铀成矿区,本文从岩石蚀变、不同介质中稀土元素的四分组效应、方解石中碳、氧和锶同位素组成等方面系统讨论了诸广-下庄铀矿集区内与铀成矿有关的各种水-岩相互作用的地质地球化学特征,得到以下主要认识: (1)铀矿田范围内成矿的花岗岩大多发生了强烈的蚀变,是水-岩作用的直接表现,晶质铀矿表面发生的溶蚀作用是铀活化的直接证据,裂变径迹特征揭示面型分布的绿泥石化是花岗岩中以类质同像形式存在的铀从花岗岩中活化出来的主要反映; (2)与铀成矿有关的花岗岩具有 M型四分组效应,而沥青铀矿、黄铁矿、方解石、绿泥石和伊利石等矿石矿物和脉石矿物则具有 W型或 W-M混合型四分组效应,这种共轭存在的 M型和 W型四分组效应表明了流体-花岗岩作用是本区铀成矿作用的关键,沥青铀矿主要是从流体中沉淀成矿的; (3)矿田范围内方解石的δ 13C、 87Sr/86Sr及δ 18O组成特征,及 87Sr/86Sr与δ 18O之间明显的负相关关系,揭示出本区铀成矿过程中的碳、水和铀来源不同--碳是幔源,铀是壳源,流体中的水至少有一部分是大气降水.  相似文献   

12.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

13.
The rhyolitic dome in the Rangan area has been subjected to hydrothermal alterations by two different systems, (1) A fossil magmatic–hydrothermal system with a powerful thermal engine of a deep monzodioritic magma, (2) An active hydrothermal system dominated by meteoric water. Based on mineralogical and geochemical studies, three different alteration facies have been identified (phyllic, advanced argillic and silicic) with notable differences in REE and other trace elements behaviour. In the phyllic alteration zone with assemblage minerals such as sericite, pyrite, quartz, kaolinite, LREE are relatively depleted whereas HREE are enriched. The advanced argillic zone is identified by the presence of alunite–jarosite and pyrophyllite as well as immobility of LREE and depletion in HREE. In the silicic zone, most of LREE are depleted but HREE patterns are unchanged compared to their fresh rock equivalents. All the REE fractionation ratios (La/Yb)cn, (La/Sm)cn, (Tb/Yb)cn, (Ce/Ce1)cn and (Eu/Eu1)cn are low in the phyllic altered facies. (Eu/Eu1)cn in both advanced and silicic facies is low too. In all alteration zones, high field strength elements (HFSE) (e.g. Ti, Zr, Nb) are depleted whereas transition elements (e.g. V, Cr, Co, Ni, Fe) are enriched. Geochemically speaking, trace and rare earth elements behave highly selective in different facies.  相似文献   

14.
The Benjamin River apatite prospect in northern New Brunswick, Canada, is hosted by the Late Silurian Dickie Brook plutonic complex, which is made up of intrusive units represented by monzogranite, diorite and gabbro. The IOA ores, composed mainly of apatite, augite, and magnetite at Benjamin River form pegmatitic pods and lenses in the host igneous rocks, the largest of which is 100 m long and 10–20 m wide in the diorite and gabbro units. In this study, 28 IOA ore and rock samples were collected from the diorite and gabbro units. Mineralogical observations show that the apatite–augite–magnetite ores are variable in the amounts of apatite, augite, and magnetite and are associated with minor amounts of epidote‐group minerals (allanite, REE‐rich epidote and epidte) and trace amounts of albite, titanite, ilmenite, titanomagnetite, pyrite, chlorite, calcite, and quartz. Apatite and augite grains contain small anhydrite inclusions. This suggests that the magma that crystallized apatite and augite had high oxygen fugacity. In back scattered electron (BSE) images, apatite grains in the ores have two zones of different appearance: (i) primary REE‐rich zone; and (ii) porous REE‐poor zone. The porous REE‐poor zones mainly appear in rims and/or inside of the apatite grains, in addition to the presence of apatite grains which totally consist of a porous REE‐poor apatite. This porous REE‐poor apatite is characterized by low REE (<0.84 wt%), Si (<0.28 wt%), and Cl (<0.17 wt%) contents. Epidote‐group minerals mainly occur in grain boundary between the porous REE‐poor apatite and augite. These indicate that REE leached from primary REE‐rich apatite crystallized as allanite and REE‐rich epidote. Magnetite in the ores often occurs as veinlets that cut apatite grains or as anhedral grains that replace a part of augite. These textures suggest that magnetite crystallized in the late stage. Pyrite veins occur in the ores, including a large amount of quartz and calcite veins. Pyrite veins mainly occur with quartz veins in augite. These textures indicate pyrite veins are the latest phase. Apatite–augite–magnetite ore, gabbro–quartz diorite and feldspar dike collected from the Benjamin River prospect contain dirty pure albite (Ab98Or2–Ab100) under the microscope. The feldspar dikes mainly consist of dirty pure albite. Occurrences of the dirty pure albite suggest remarkable albitization (sodic alteration) of original plagioclase (An25.3–An60 in Pilote et al., 2012) associating with intrusion of monzogranite into gabbro and diorite. SO42? bearing magma crystallized primary REE‐rich apatite, augite and anhydrite reacted with Fe in the sodic fluids, which result in oxidation of Fe2+ and release of S2? into the sodic fluids. REE, Ca and Fe from primary REE‐rich apatite, augite and plagioclase altered by the sodic fluids were released into the fluids. Then Fe3+ in the sodic fluids precipitated as Fe oxides and epidote‐group minerals in apatite–augite–magnetite ores. Finally, residual S2? in sodic fluids crystallized as latest pyrite veins. In conclusion, mineralization in Benjamin River IOA prospect are divided into four stages: (1) oxidized magmatic stage that crystallized apatite, augite and anhydrite; (2) sodic metasomatic stage accompanying alteration of magmatic minerals; (3) oxidized fluid stage (magnetite–epidote group minerals mineralization); and (4) reduced fluid stage (pyrite mineralization).  相似文献   

15.
Study of the concentration of major, trace, and rare earth elements (REE) in the Shahindezh karst bauxite deposit, northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxite ores. The existence of irregular curves in the chondrite-normalized REE patterns as well as non-CHARAC behavior of geochemically isovalent pairs (Y/Ho) are related to the tetrad effect. The meaningful positive correlation between the sizes of the calculated T3 tetrad effect and some geochemical factors such as Y/Ho, ΣREE, La/Y, (La/Yb)N, and (LREE/HREE)N as well as some major oxides-based parameters like Al2O3 + LOI/SiO2 + Fe2O3, Al2O3/Fe2O3, Al2O3 + LOI, IOL, and SiO2 + Fe2O3 indicate that the studied bauxite horizon was likely deposited by different (acidic and/or alkalic) solutions at different stages. The lower part of the studied horizon with a thickness of ~4.7 m displays alkali characteristics whereas the upper parts of the horizon with a thickness of ~5.3 m are characterized by more acidic conditions. These results are fully supported by the co-occurrence of convex-concave tetrad effect curves in the chondrite-normalized REE patterns. Therefore, the tetrad effect phenomenon used in this study has proved to be a good and reliable geochemical proxy to assess the conditions of the depositional environment in the Shahindezh bauxite ores.  相似文献   

16.
Abstract. The Pantingan Gold System (PGS) is a vein-type epithermal prospect exposed within the summit caldera of Mount Mariveles, Bagac, Bataan (Luzon), Philippines. It consists of nine major veins, eight of which trend NW-WNW and distributed in an en echelon array. The eastern tips of these veins appear to terminate near the NE-NNE trending Vein 1, which is located in the easternmost portion of the prospect. Metal assay results on vein and wall rock samples indicate concentrations of 0.01 to 1.1 g/ton Au, trace to 34 g/ton Ag and 0.003 to 0.02 % Cu. Andesite lava flow deposits host the PGS. Potassium-Argon isotopic dating of these andesites yields anarrow age range of 0.88± 0.13 to 1.13 ± 0.17 Ma. The surface exposures of the veins (up to 5 m wide) are encountered at different levels between 590–740 masl. These commonly display a massive texture although banding prominently occurs in Vein 1. The veins consist of gray to cream-colored crystalline and chalcedonic quartz and amorphous silica. Pyrite is the most ubiquitous sulfide mineral. It occurs either as fine-grained disseminations and aggregates in quartz or as infillings in vugs. Calcite, marcasite and bornite are also occasionally noted in the deposit. The prospect shows silicic, argillic, propylitic and advanced argillic alteration zones. Silicic and argillic alterations are confined in the immediate wall rocks of the quartz veins. Argillic alteration grades to a propylitic zone farther away from the veins. The advanced argillic alteration zone, indicated by a suite of acidic clay minerals that include kaolin-ite, dickite, pyrophyllite and alunite, might have been imprinted during the late stages of gold deposition. As a whole, the PGS displays geological and mineralogical features typical of gold mineralization in a low sulfidation, epithermal environment. It is also representative of a young, tectonically undisturbed gold deposit.  相似文献   

17.
In some geological environments, the tetrad effect can be observed as a split of rare earth element (REE) patterns into four rounded segments. A new method is proposed to quantify the sizes of the individual segments, and for the first time, the significance of observed tetrad effects is evaluated by taking analytical errors into account. The outlined method was applied to lanthanide patterns of whole-rock and fluorite samples collected from granite-related rare metal deposits. The REE patterns of the granite and greisen samples investigated exhibit significant tetrad effects that may not be accounted for by analytical uncertainties. It is shown that the study of whole-rock samples is insufficient to determine whether this effect is developed during fractional crystallization or is due to other processes such as fluid-rock interaction. A concave tetrad effect mirroring the pattern of the whole-rock samples was not observed in the REE patterns of related vein fluorite samples. Therefore, it is unlikely that the convex tetrad effect in the samples from the magmatic environment can be explained by removal of a respective complementary REE pattern by a coexisting hydrothermal fluid, as previously suggested. It is proposed that the tetrad effect formed within the magma-fluid system before emplacement in the subvolcanic environment where phase separation caused a split of this system into fluid and magma subsystems. Alternatively, the tetrad effect may also be inherited from an external fluid influencing the system during or after the emplacement of the magma. On the basis of the fluorite data, it is shown that the behavior of Eu in the fluids is not related to the tetrad effect. Consequently, different physico-chemical factors control the occurrence of both phenomena. Y was found to be strongly enriched in samples precipitating from hydrothermal fluids that experienced prolonged interaction with the wall-rocks, whereas the tetrad effect in the fluids vanished with time and increasing distance from the ore-bearing granite. Thus, these different geochemical parameters can be used to reconstruct different aspects of the fluid evolution within this type of deposit.  相似文献   

18.
Abstract. Several epithermal gold deposits occur in the Hoshino area, which is located in the western end of the late Cenozoic Hohi volcanic zone, north‐central Kyushu, Japan. The area is characterized by intermediate to felsic extrusive rocks of Pliocene age. In the Hoshino area, the shallow manifestation of the hydrothermal activity is exposed on the surface. Several outcrops of sinter are still preserved on the top of hydro thermally altered volcanic rocks, and high‐grade gold‐bearing quartz veins occur on the surface at lower levels. The hydrothermal alteration resulted into well‐developed alteration zones. The zonal alteration pattern, primarily of near‐neutral pH type, is characterized by the outer smectite zone of a lower temperature, and the inner mixed layer minerals zone of a higher temperature. Quartz vein‐related or fracture‐controlled alteration, is represented by the occurrence of interstratified illite/smectite and K‐feldspar, suggesting a potassium‐enriched alteration. The mineralization in the Hoshino area is recognized on the surface by the occurrence of gold‐bearing quartz veins distributed mainly in the mixed layer minerals zone. The fracture system related to the gold mineralization is mainly characterized by NW‐SE trend. The alteration pattern and the mineralogical composition of the veins suggest that the mineralizing fluids had near‐neutral pH and the mineralization is of low‐sulfidation‐type. Fluid inclusion data and textures observed in quartz veins indicate that gold precipitated during boiling. The chemical composition of quartz veins shows that high‐grade gold‐bearing quartz veins are characterized by higher content of Al2O3, K2O and Rb. Several outcrops of silica‐sinters are distributed on the top of the mixed layer minerals zone. Although their structures are not very well preserved, because of later silicification, the Hoshino sinters still show characteristic textures identical to those observed in modern sinters, such as the presence of plant fossil incorporated into the sinters, the strongly developed depositional laminations and the columnar structures perpendicular to the depositional surfaces. Quartz is the only silica mineral constituting the Hoshino sinters presently. The conversion of amorphous silica into quartz was probably governed by higher temperatures resulting from later hydrothermal activity. This later hydrothermal activity is reflected by the intense silicification affecting mainly the lower parts of the sinters and also by the presence of quartz veins cutting the sinters. The distribution of sinters in the Hoshino area is very significant. The presence beneath the sinters of concealed high‐grade gold‐bearing quartz veins should be highly considered and exploration work is strongly suggested.  相似文献   

19.
This paper focuses on reasons for the appearance of tetrad effects in chondrite-normalized REE distribution patterns of granitoids (Li-F granites, peralklaine granites, ongonites, fluorine-rich rhyolites, and granitic pegmatites). The analysis of published data showed that the alteration of such rocks by high- and/or low-temperature metasomatic processes does not result in most cases in the appearance or enhancement of M-type tetrad effects in REE patterns. These processes are accompanied by the removal or addition of lanthanides, a W-type sag appears between Gd and Ho, and negative or positive Ce anomalies develop sometimes in REE patterns. The formation conditions of peculiar rocks enriched in Ca and F from the Ary Bulak ongonite massif (eastern Transbaikalia) and the character of REE distribution in these rocks and melt inclusion glasses were discussed. Based on the obtained data and the analysis of numerous publications, it was concluded that REE tetrad effects in rare-metal granitoids are caused by fluoride-silicate liquid immiscibility and extensive melt differentiation in the accumulation chambers of fluorine-rich magmas. A considerable increase in fluorine content in a homogeneous granitoid melt can cause its heterogenization (liquation) and formation of fluoride melts of various compositions. The redistribution of lanthanides between the immiscible liquid phases of granitoid magma will result in the formation of M-type tetrad effects in the silicate melts, because the REE patterns of fluoride melts exhibit pronounced W-type tetrad effects. The maximum M-type tetrad effect between La and Nd, which is observed in many rare-metal granitoids, is related to the character of REE partitioning between fluoride and silicate melts and F- and Cl-rich magmatic fluids. The low non-chondritic Y/Ho ratio (<15) of many rare-metal granitoids may be indicative of a contribution of fluoride melts to the differentiation of F-rich silicic magmas, from which these rocks were formed. The influence of high-temperature F-Cl-bearing fluids on melts and/or granitoid rocks results in an increase in Y/Ho ratio owing to the elevated solubility of Ho in such fluids.  相似文献   

20.
铧厂沟金矿床地质特征及控矿冈素分析   总被引:7,自引:0,他引:7  
铧厂沟金矿床位于勉-略-宁三角地带成矿有利部位。矿区出露中下泥盆统三河口群和中上元古界碧口群。矿床内发育的韧性剪切带经历了右行(韧性)-左行(韧脆性)-右行(脆性)多期(次)活动矿化受透镜状细碧岩控制,分布于韧性剪切带之中。矿体蚀变强烈,新生矿物定向排列,脉体中矿物具亚颗粒、变形纹、变形条带等料内变形特征。同位素地球化学及稀土分析结果表明,基性火山岩是金的矿源层。金矿的形成富集与韧性剪切带多期(次  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号