首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of graphitization of carbonaceous material (CM) has been widely used as an indicator of metamorphic grade. Previous work has demonstrated that peak metamorphic temperature (T) of regional metamorphic rocks can be estimated by an area ratio (R2) of peaks recognized in Raman spectra of CM. The applicability of this method to low‐pressure (<3 kbar) contact metamorphism was tested using Raman spectroscopic analyses of samples from two contact‐metamorphic aureoles in Japan (Daimonji and Kasuga areas). A suitable measurement procedure allows the dependence of the geothermometer on sample type (thin section, chip) and incident angle of laser beam relative to the c‐axes of CM to be tested. Two important general results are: (i) in addition to standard thin sections, chips are also suitable for spectral analysis; and (ii) the incident angle of the laser beam does not significantly affect the temperature estimation, i.e. spectral measurements for the geothermometer can be carried out irrespective of the crystallographic orientation. A laser wavelength of 532 nm was used in this study compared with 514.5 nm in an independent previous study. A comparison shows that the use of a 532‐nm laser results in a slightly, but systematically larger R2 ratio than that of a 514.5‐nm laser. Taking this effect into account, our results show that there is a slight but distinct difference between the R2–T correlations shown by contact and regional metamorphic rocks: the former are slightly better‐crystallized (have slightly lower R2 values) than the latter at the same temperature. This difference is interpreted as due to the degree of associated deformation. Despite the slight difference, the results of this study coincide within the estimated errors of ±50 °C with those of the previously proposed Raman CM geothermometer, thus demonstrating the applicability of this method to contact metamorphism. To facilitate more precise temperature estimates in regions of contact metamorphism, a new calibration for analyses using a 532‐nm laser is derived. Another important observation is that the R2 ratio of metamorphosed CM in pelitic and psammitic rocks is highly heterogeneous with respect to a single sample. To obtain a reliable temperature estimate, the average R2 value must be determined by using a substantial number of measurements (usually N > 50) that adequately reflects the range of sample heterogeneity. Using this procedure (with 532‐nm laser) and adapting our new calibration, the errors of the Raman CM geothermometer for contact metamorphic rocks decrease to ~±30 °C.  相似文献   

2.
Raman spectral analyses of carbonaceous material (CM) extracted from pelitic samples along two sections traversing the metamorphic belt of Taiwan were carried out in the present study. The results show similar spectral variations of CM with metamorphic grade as those documented in the literature. However, continuous sampling from zeolite facies through prehnite–pumpellyite facies to greenschist facies metamorphic rocks in the present study does reveal some interesting features on the Raman spectra of CM that were not noted before. Both the Raman D (disordered-)/O (ordered-) peak area (i.e. integrated intensity) ratio and the D/O peak width (i.e. full width at half maximum, FWHM) ratio of the CM decrease with progressive metamorphism, but the most prominent change in the D/O peak area ratio occurs in samples of lower greenschist facies metamorphic grade, while the most significant decrease in the D/O peak width ratio occurs in samples near the boundary of prehnite–pumpellyite facies and greenschist facies. This phenomenon is interpreted as a result of the decoupling of the changing rates of in-plane crystallite size and degree of defects of CM with progressive metamorphism. It is postulated that the Raman spectrum of CM can serve as a metamorphic grade indicator to distinguish samples of prehnite–pumpellyite facies metamorphic grade from those of greenschist facies metamorphic grade.  相似文献   

3.
The degree of recrystallization of carbonaceous material (CM), as monitored by Raman microspectroscopy, was examined as a function of metamorphic grade in two well‐studied contact aureoles containing carbonaceous pelites: the Nelson aureole, British Columbia and the Ballachulish aureole, Scotland. Here, we use (a) the R2 ratio extracted from the Raman spectrum of CM as a proxy for the degree of graphitization (0.0 in perfect graphite then increasing with structural defects) and (b) the second‐order S1 band (~2,700 cm?1) as a marker for the tridimensional ordering of CM. The Nelson aureole (garnet–staurolite–andalusite–sillimanite–K‐feldspar sequence, ~550–650°C, 3.5–4.0 kbar) was developed in rocks that were unmetamorphosed prior to contact metamorphism, whereas the Ballachulish aureole (cordierite–andalusite–K‐feldspar–sillimanite sequence, ~550–700°C, ~3.0 kbar) was developed in rocks that had been metamorphosed to garnet grade conditions (~7 kbar, ~500°C) c. 45 Ma before contact metamorphism. Thirty‐one samples were examined from Nelson and 29 samples from Ballachulish. At Nelson, the R2 ratio steadily decreases from ~0.25 to 0.0 as the igneous contact is approached, whereas at Ballachulish, the R2 ratio remains largely unchanged from regional values (~0.20–0.25) until less than 100 m from the igneous contact. The second‐order S1 band reveals that carbonaceous material (CM) was transformed to highly “ordered” locally tridimensional graphitic carbon at Ballachulish by regional metamorphism prior to contact metamorphism, whereas CM was still a disordered turbostratic (bidimensional) material before contact metamorphism in the case of Nelson. Pretexturation of CM likely induced sluggish recrystallization of CM and delayed graphitization in the Ballachulish aureole. Temperatures of recrystallization of the CM in the two aureoles were estimated using different published calibrations of the thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM), with differences among the calibrations being minor. In the Nelson aureole, temperatures are in reasonable agreement with those indicated by the metapelitic phase equilibria (all within 50°C, most within 25°C). In the Ballachulish aureole, the retarded crystallization noted above results in increasing underestimates of temperatures compared to the metapelitic phase equilibria (up to ~75°C too low within 200 m of the igneous contact). Our study calls for careful attention when using RSCM thermometry in complexly polymetamorphosed rocks to assess properly the meaning of the calculated temperature.  相似文献   

4.
Palaeoproterozoic black shales form an essential part of the Birimian volcanosedimentary belt in Burkina Faso, West Africa. The mean Rmax values and the atomic H/C values of the bulk carbonaceous matter (BCM), together with rock structures and mineral assemblages, indicate that these carbon‐rich rocks were metamorphosed to sub‐greenschist and low‐grade greenschist facies. X‐ray diffraction reveals that the (002) ‘graphite’ peak width in half maximum (FWHM) ranges from 0.43 to 0.71 °2θ in sub‐greenschist facies and from 0.27 to 0.41 °2θ in greenschist facies rocks, but the d(002) values in both groups of rocks are approximately the same (~3.35 Å). The BCM of individual samples is composed of particles with very variable shape, reflectance and Raman spectra. Type I particles that predominate in sub‐greenschist facies are fine‐grained, irregular or elongate bodies 1 to 3 μm in size. Their maximum reflectance (Rmax) ranges between 2.5% and 8.2%, and Raman parameters R1 and R2 range from 0.5 to 1.4 and 0.5 to 0.8, respectively. Type II particles are lath‐shaped, up to 40 μm large bodies, commonly arranged parallel to white mica flakes. The number of these particles increases from sub‐greenschist to greenschist facies. Maximum reflectance varies between 6% and 11.2% and R1 and R2 Raman parameters range from 0.05 to 0.7 and from 0.1 to 0.5, respectively. Type III particles occur in hydrothermally altered and sheared rocks; these are nodular aggregates composed of grains up to 10 μm in size. This type of particles has very high reflectance (Rmax = 11–15%) and its Raman spectra indicate a very high degree of structural ordering corresponding to well‐ordered graphite. Type I particles represent original organic matter in the metasediments. Type II particles are believed to have been formed either in situ by solid‐state transformation of Type I particles or by crystallization from metamorphic fluids. Gradual graphitization of the Type I organic particles and the growth of lath‐shaped Type II particles from a fluid phase is assumed to have taken place under the peak metamorphic conditions associated with the burial of Birimian sediments during thrust tectonism, progressive tectonic accretion and crustal thickening during the D1 event of the Eburnean orogeny. The growth of equant, high‐reflectance postkinematic nodular aggregates of Type III particles is ascribed to the reduction of CO2‐rich fluids during a hydrothermal event associated with Late Eburnean D2 exhumation and strike–slip movements. Type I carbonaceous particles were only slightly affected by high‐temperature, low‐pressure contact metamorphism during intrusion of Late Eburnean magmatic bodies, whereas formation of Type II or III particles was not recorded in contact‐metamorphosed rocks at all.  相似文献   

5.
6.
New petrological and geochronological data are presented on high‐grade ortho‐ and paragneisses from northwestern Ghana, forming part of the Paleoproterozoic (2.25–2.00 Ga) West African Craton. The study area is located in the interference zone between N–S and NE–SW‐trending craton‐scale shear zones, formed during the Eburnean orogeny (2.15–2.00 Ga). High‐grade metamorphic domains are separated from low‐grade greenstone belts by high‐strain zones, including early thrusts, extensional detachments and late‐stage strike‐slip shear zones. Paragneisses sporadically preserve high‐pressure, low‐temperature (HP–LT) relicts, formed at the transition between the blueschist facies and the epidote–amphibolite sub‐facies (10.0–14.0 kbar, 520–600 °C), and represent a low (~15 °C km?1) apparent geothermal gradient. Migmatites record metamorphic conditions at the amphibolite–granulite facies transition. They reveal a clockwise pressure–temperature–time (P–T–t) path characterized by melting at pressures over 10.0 kbar, followed by decompression and heating to peak temperatures of 750 °C at 5.0–8.0 kbar, which fit a 30 °C km?1 apparent geotherm. A regional amphibolite facies metamorphic overprint is recorded by rocks that followed a clockwise P–T–t path, characterized by peak metamorphic conditions of 7.0–10.0 kbar at 550–680 °C, which match a 20–25 °C km?1 apparent geotherm. These P–T conditions were reached after prograde burial and heating for some rock units, and after decompression and heating for others. The timing of anatexis and of the amphibolite facies metamorphic overprint is constrained by in‐situ U–Pb dating of monazite crystallization at 2138 ± 7 and 2130 ± 7 Ma respectively. The new data set challenges the interpretation that metamorphic breaks in the West African Craton are due to diachronous Birimian ‘basins’ overlying a gneissic basement. It suggests that the lower crust was exhumed along reverse, normal and transcurrent shear zones and juxtaposed against shallow crustal slices during the Eburnean orogeny. The craton in NW Ghana is made of distinct fragments with contrasting tectono‐metamorphic histories. The range of metamorphic conditions and the sharp lateral metamorphic gradients are inconsistent with ‘hot orogeny’ models proposed for many Precambrian provinces. These findings shed new light on the geodynamic setting of craton assembly and stabilization in the Paleoproterozoic. It is suggested that the metamorphic record of the West African Craton is characteristic of Paleoproterozoic plate tectonics and illustrates a transition between Archean and Phanerozoic orogens.  相似文献   

7.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   

8.
Graphite and graphite-like materials widely are present at black shale and magmatic ores. The nature of these carbon materials (CM) is multifarious. In what cause connects a mineralization with carbon. The great numbers of parameters, namely, the temperature, the pressure, the shear stress, the catalytic species, the host-rock lithology, the time and etc., have an influence on the graphitization process. Accumulations of gold and platinum group elements in black graphite shale and extraction of these metals from rocks depend in considerable degree from structural properties of CM. Raman spectroscopy has wide applied for various carbon modifications, including nano-structuring materials. The first and second-order Raman spectrum have been correlated with changes in the structure of graphite. There is a linear relationship between temperature and Raman R2 and R1 parameters (derived from the area and intensity of the defect band (D) relative to the ordered graphite band (G), respectively). The purpose of the present study is to characterize the rocks and CM from carbon-rich rocks of gold-ore deposits of the black-shale formation and magmatic ores using micro-Raman spectroscopy technique (Horiba Jobin Ivon LabRam spectrometer). Exciting was performed with 325 nm line of He-Cd laser. The graphite and graphite-like samples from many ore deposits of Russia and Kazahstan are investigations. R1 and R2 ratio indicate variable degree of organisation CM in the samples. The results show different spectral variations of CM with metamorphic grade: the well-ordered graphite from magmatic rocks, more - ordered and the disordered less graphitized CM from black-shale ores. For the first time in the world practice the Raman spectroscopy technique has been applied to determine the temperature of graphitizing for CM at gold-ore deposits of the black-shale formation. The temperatures obtained on carboniferous substance for the gold deposits range from 405°С to 280°С. Temperature of CM formation from Pt-low sulphide ores of the Talnakh deposit ranges from 4700C to 6500C. It has been shown that the carbon-rich phases from black-shale and magmatic rocks have various degrees of graphitization and different carbon forms.  相似文献   

9.
The Tenda crystalline massif (northern Corsica) is a fragment of the western Corsica basement involved in the Alpine orogeny. Rhyolite dykes crosscutting the gabbroic complex of Bocca di Tenda (southern sector of the Tenda crystalline massif) show an unusual metamorphic mineral assemblage, defined by jadeite‐bearing (up to 46 mol percentage) aegirine, riebeckite, celadonite‐rich phengite (Si=3.50–3.65 apfu), quartz, albite and K‐feldspar. Jadeite‐bearing aegirine and riebeckite mostly occur as coronas around jadeite‐free aegirine and arfvedsonite, respectively, which both are relics of igneous origin. This metamorphic assemblage reflects the peralkaline compositions, which are characterised by anomalously high contents of SiO2 and Na2O, and negligible CaO and MgO. The evolved rocks of the gabbroic sequence (quartz‐diorites to tonalites) and the surrounding granitoids are characterised by the development of riebeckite/ferroglaucophane, epidote, celadonite‐rich phengite and albite, thus pointing to a metamorphic crystallization in the epidote‐blueschist facies. In all the studied rocks, metamorphic reactions were controlled by fluid‐assisted mass‐transfer through grain boundaries and microfractures. The different mineral assemblages allow the peak P–T metamorphic conditions to be constrained to between 0.8 GPa/300 °C and 1.1 GPa/500 °C. These estimates attest to a geothermal gradient (dT/dP) of 10–13 °C km?1 and indicate that the Tenda crystalline massif was buried to a minimum depth of 27 km during the Alpine orogeny. The blueschist facies recrystallization in the Tenda crystalline massif has been related to the cessation of an eastward‐dipping subduction event.  相似文献   

10.
Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Palaeoproterozoic metamorphic processes, Triassic continental subduction‐collision and Cretaceous collapse of the Dabie Orogen. Six stages of metamorphism are resolved, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high‐pressure/high‐temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630–700 °C); (IV) medium‐pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low‐pressure/high‐temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The PT history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise PT path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent at c. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to Triassic subduction/collision between the Yangtze and Sino‐Korean Cratons. The dry lower crustal granulite persisted metastably during the Triassic subduction/collision because of the lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabie Orogen, possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high‐pressure–ultrahigh‐pressure metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction‐collision and orogenic collapse.  相似文献   

11.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

12.
The graphitization of carbonaceous material (CM) in a high-pressure metamorphic gradient is characterized along a cross section in the Schistes Lustrés formation, Western Alps. Along this 25-km cross section, both the CM precursor and the host-rock lithology are homogeneous, and the prograde evolution of the pressure-temperature metamorphic conditions from the lower blueschist-facies (13 kbar, 330 °C) to the eclogite-facies (20 kbar, 500 °C) is tightly constrained by literature data. Raman microspectroscopy shows that at the micrometre scale, this process is progressive and continuous with increasing metamorphic grade, and that the structure of CM is very sensitive to temperature variations. At the nanometre scale (HRTEM), the CM is composed of a mixture of a microporous phase and an onion-ring like phase, both known as non-graphitizing under the effect of temperature at ambient pressure. The HP-LT graphitization produces structurally and microtexturally heterogeneous CM. With increasing metamorphic grade, the graphitization of the two types of CM proceeds up to the triperiodic graphite stage because of microtextural and structural changes that are specific to each type of CM. The microporous material is progressively transformed into graphite through a macroporous transitional stage. In this case, graphitization mainly occurs on the pore walls as a result of pore growth. In the case of concentric onion-ring like material, graphitization occurs in the regions with the largest radius of curvature, i.e. on the outer part of the ring. In comparison with 1-bar experiments, pressure seems to induce microtextural changes, which allows the subsequent structural modifications of the starting material.  相似文献   

13.
Calcite–dolomite solvus geothermometry is a versatile method for the estimation of metamorphic temperature because of its simplicity. However, in medium‐ to high‐grade metamorphic rocks the accuracy of estimating temperature by the integration of unmixed dolomite and calcite is hampered by the heterogeneous distribution of unmixed dolomite, difficulties in distinguishing between preexisting and exsolved dolomite and demarcating grain boundaries. In this study, it is shown that calcite–dolomite solvus thermometry can be applied to calcite inclusions in forsterite and spinel for the estimation of peak metamorphic temperature in granulite facies marbles from Skallevikshalsen, East Antarctica. The marbles are comprised of a granoblastic mineral assemblage of calcite + dolomite + forsterite + diopside + spinel + phlogopite ± apatite, characteristic of granulite facies metamorphic conditions. Forsterite, spinel and apatite frequently contain ‘negative crystal’ inclusions of carbonates that display homogeneously distributed dolomite lamellae. On the basis of narrow ranges of temperature (850–870 °C) recorded from carbonate inclusions compared with the range from matrix carbonate it is regarded that the inclusion carbonates represent a closed system. Furthermore, this estimate is consistent with dolomite–graphite carbon isotope geothermometry, and is considered to be the best estimate of peak metamorphic temperature for this region. Matrix calcite records different stages of retrograde metamorphism and re‐equilibration of calcite that continued until Mg diffusion ceased at 460 °C. Electron backscattered diffraction (EBSD) results together with morphological features of unmixed coarse tabular dolomite suggest anisotropic diffusion and mineral growth are influenced by crystallographic orientation. Identification of sub‐grain boundaries and formation of fine‐grained unmixing in calcite rims suggest the presence of grain boundary fluids in the late retrograde stages of metamorphic evolution. These results, thus, demonstrate the usefulness of carbonate inclusion geothermometry in estimating the peak metamorphic temperatures of high‐grade terranes and the application of EBSD in understanding the unmixing behaviour of minerals with solid solutions.  相似文献   

14.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

15.
Two contrasting styles of metamorphism are preserved in the central Southern Cross Province. An early, low‐grade and low‐strain event prevailed in the central parts of the Marda greenstone belt and was broadly synchronous with the first major folding event (D1) in the region. Mineral assemblages similar to those encountered in sea‐floor alteration are indicative of mostly prehnite‐pumpellyite facies conditions, but locally actinolite‐bearing assemblages suggest conditions up to mid‐greenschist facies. Geothermobarometry indicates that peak metamorphic conditions were of the order of 250–300°C at pressures below 180 MPa in the prehnite‐pumpellyite facies, but may have been as high as 400°C at 220 MPa in the greenschist facies. A later, higher grade, high‐strain metamorphic event was largely confined to the margins of the greenstone belts. Mineral assemblages and geothermobarometry suggest conditions from upper greenschist facies at P–T conditions of about 500°C and 220 MPa to upper amphibolite facies at 670°C and 400 MPa. Critical mineral reactions in metapelitic rocks suggest clockwise P–T paths. Metamorphism was diachronous across the metamorphic domains. Peak metamorphic conditions were reached relatively early in the low‐grade terrains, but outlasted most of the deformation in the higher grade terrains. Early metamorphism is interpreted to be a low‐strain, ocean‐floor‐style alteration event in a basin with high heat flow. In contrast, differential uplift of the granitoids and greenstones, with conductive heat input from the granitoids into the greenstones, is the preferred explanation for the distribution and timing of the high‐strain metamorphism in this region.  相似文献   

16.
变质沉积岩普遍含有碳质物,其源自沉积母岩中有机质。在变质过程中这些有机质逐渐转变为碳质物或石墨,且碳质物结晶程度可以作为变质等级的可靠指示标志。拉曼光谱是表征碳质物结晶度的有效工具,Beyssac et al.(2002a)基于碳质物拉曼光谱参数(R1=D1/G,D1和G为碳质物拉曼光谱峰强;R2=D1/(G+D1+D2),G、D1和D2为碳质物拉曼光谱峰面积)与寄主岩变质温度之间的线性关系构建了碳质物拉曼光谱温度计:T(℃)=-445(R2)+641,其简单且实用,并被应用到阿尔卑斯和喜马拉雅造山带热结构与折返机制研究中;随后,Rahl et al.(2005)对该变质温度计进行修订,修订后温度估算表达式为:T(℃)=737.3+320.9R1-1067R2-80.638R12,并将变质温度估算范围扩展为100~700℃。本文对碳质物拉曼光谱变质温度计的基本原理、方法、应用条件及其在造山带热结构重建与演化方面的研究进展进行了综述,并对碳质物拉曼光谱温度计与传统温度计估算的变质温度进行了系统的对比分析,结果表明碳质物拉曼光谱温度计代表峰期变质温度,不会受后期退变质影响,当传统温度计结果代表峰期变质温度时,二者计算结果一致。碳质物拉曼光谱温度计已被用于造山带热结构重建、折返过程的热演化,以及高应变带、流体相关热异常等研究。尽管变质过程的压力、变质持续时间、碳质物前体类型等因素对于碳质物拉曼光谱温度计的影响尚待研究,但与传统矿物组合温压计相结合,该方法可以有效评价峰期变质条件和造山多期热演化。  相似文献   

17.
Documentation of pressure–temperature (P–T) histories across an epidote‐amphibolite facies culmination provides new insight into the tectono‐thermal evolution of the Brooks Range collisional orogen. Thermobarometry reveals that the highest grade rocks formed at peak temperatures of 560–600 °C and at pressures of 8–9.5 kbar. The thermal culmination coincides with the apex of a structural dome defined by oppositely dipping S2 crenulation cleavages suggesting post‐metamorphic doming. South of the thermal culmination, greenschist facies and lowermost epidote‐amphibolite facies rocks preserve widespread evidence for an early blueschist facies metamorphism. In contrast, no evidence for an early blueschist facies metamorphism was found in similar grade rocks of the northern flank, indicating that the southern flank underwent initial deeper burial during southward underthrusting of the continental margin. Thus, while the dome shows a symmetric distribution of peak temperatures, the P–T paths followed by the two flanks must have varied. This variation suggests that final thermal re‐equilibration to greenschist and epidote–amphibolite facies conditions did not result from a simple process of southward underthrusting followed by thermal re‐equilibration from the bottom upward. The new data are inconsistent with a previous model that invokes such re‐equilibration, along with northward thrusting of epidote–amphibolite facies rocks over lower grade rocks presently on the southern flank of the culmination, to produce an inverted metamorphic field gradient. Instead, it is suggested that following blueschist facies metamorphism, rocks of the southern and northern flanks were juxtaposed, during which time the more deeply buried south flank was partially emplaced above rocks to the north, where they escaped Albian epidote–amphibolite facies overprinting. Porphyroblast growth, which post‐dates the main fabric on the north flank of the culmination may be the result of Albian thermal re‐equilibration following this deformation. Post‐metamorphic doming resulted from a combination of Albian‐Cenomanian extension and Tertiary deformation.  相似文献   

18.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

19.
The Cretaceous Yuhuashan igneous complex contains abundant xenoliths of high‐grade metamorphic rocks, with the assemblage garnet ± hypersthene + biotite + plagioclase + K‐feldspar + quartz. The biotite in these samples has high TiO2 (>3.5%), indicating high‐T metamorphism (623–778 °C). P–T calculations for two felsic granulites indicate that the peak metamorphism took place at 880–887 °C and 0.64–0.70 GPa, in the low pressure/high temperature (LP‐HT) granulite facies. Phase equilibrium modelling gives equilibrium conditions for the peak assemblage of a felsic granulite of >0.6 GPa and >840 °C, consistent with the P–T calculations, and identifies an anticlockwise P–T–t path. LA‐ICPMS U–Pb dating of metamorphic and detrital zircon from one xenolith reveals that the granulite facies metamorphism took place at 273.6 ± 2.2 Ma, and the protolith was a sedimentary rock deposited later than 683 Ma. This represents the first Late Palaeozoic (Variscan) granulite facies event identified in the South China Block (SCB). Coupled with other geological observations, the LP‐HT metamorphic conditions and anticlockwise P–T–t path suggest that Variscan metamorphism probably occurred in a post‐orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of mantle‐derived magma. Based on P–T estimates and the comparison of the protolith composition with mid‐ to low‐grade metamorphic rocks in the area, it is suggested that the mid‐lower crust under the Xiangshan–Yuhuashan area consists mainly of these felsic granulites and gneisses, whose protoliths were probably subducted to these depths during the Early Palaeozoic orogeny in the SCB, and underwent two episodes of metamorphism during Early Palaeozoic and Late Palaeozoic time.  相似文献   

20.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号