首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tectonics of the Chenoua massif suggests block rotations of Neogene nappes associated with the African–European plate convergence. To estimate the extent of these rotations, a Paleomagnetic study on rhyolites and andesites of Langhian–Serravallian age and sandstones of Burdigalian age was carried out on 23 sites (200 specimens). The sites are distributed in the northwestern, southeastern and southern Chenoua massif. One or two components of magnetization, mainly carried by magnetite, pyrrhotite and/or hematite, were isolated in sandstones and volcanics. The sandstone sites reveal magnetizations in sandstones from the Cap Blanc syncline that are post-folding. However, both polarities are found, which is consistent with data from Africa during the Upper Miocene. Clockwise and counterclockwise rotations were recorded, dating back to the Neogene times in volcanics and sediments. From the faulted Cap Blanc syncline counterclockwise rotations of 1?±?4° to 18?±?28° around a vertical axis occurred in sediments since the Miocene with respect to Africa. In fact, remagnetizations occurred at several periods of time and in different sites, providing information on the evolution of post-tectonic rotations. Some volcanics record counterclockwise rotations of about 30° since the Miocene, whereas others do not show any significant rotation. This can be explained by the direction of the principal compressive stress axis σ 1 and by lateral extrusions related to an indentation model, in which we expect both clockwise and counterclockwise rotations.  相似文献   

2.
Atsushi Yamaji   《Tectonophysics》2003,364(1-2):9-24
The northern Ryukyu Arc has active backarc rift, neutral-stress forearc, and active accretionary prism. The Okinawa Trough has been shaped by the episodic rifting in the backarc. Paleostresses were inferred in this study from mesoscale faults in Neogene forearc sediments called the Miyazaki Group, southeast Kyushu in the northern Ryukyu Arc. The forearc stress changed from compressional to extensional from the latest Miocene through Early Pliocene time. The stress history is concordant with the transition in tectonic regime from folding to rifting in the backarc. The transition in the stress state occurred simultaneously also with trenchward movement of the volcanic front. These phenomena suggest that the subducting slab under southern Kyushu became steeper in the Early Pliocene. Extensional tectonics ceased sometime in the late Pliocene or early to mid-Pleistocene, concordant with the counterclockwise change of subducting direction of the Philippine Sea Plate.  相似文献   

3.
International Journal of Earth Sciences - The Vienna Basin is a tectonically complex Neogene basin situated at the Alpine–Carpathian transition. This study analyzes a detailed quantification...  相似文献   

4.
The chloritoid schists from the Slavonian Mts., which are attributed to the basal part of Devonian to Permian “Hercynian Semimetamorphic Complex,” represent a very rare lithology, not only in the Tisia Mega-Unit outcrops in Croatia, but also in the wider area. The investigated outcrop in the Kutjeva?ka Rijeka transect (Mt. Papuk) encompasses chloritoid-bearing metapelitic and metapsammitic lithologies. Both contain K-white mica, chlorite, chloritoid (10–15 vol.%), quartz and minor K-feldspar, plagioclase (albite), opaque minerals and pyrophyllite, together with accessory zircon, rutile, xenotime. The Th–U–Pb age dating on xenotime grains within the K-white mica + chlorite + quartz matrix and on inclusions found inside the chloritoids gave an average age 120 ± 36 Ma. Peak metamorphic conditions during the Alpine chloritoid-forming event reached 3.5–4 kbar and 340–380 °C, based on phengite barometry, chlorite–chloritoid thermometry and intersection of chlorite and chloritoid isopleths in the KFMASH quantitative phase diagram. The post-tectonic character of lath- and rosette-shaped chloritoids with respect to two foliations in the rock, together with the older age of 219 ± 81 Ma obtained on Yb-rich xenotime core domain(s), implies a possible existence of older low-grade metamorphic phase(s). The chemistry of the chloritoid schists bears the signature of upper continental crustal felsic rocks as potential protoliths, probably the felsic rocks of the nearby Papuk Complex of Slavonian Mts. The evidence presented here for the chloritoid-bearing low-grade metamorphic rocks from the Slavonian Mountains clearly show that the prograde Alpine metamorphic event had a more significant influence on the evolution of the southern part of Tisia Mega-Unit than previously considered.  相似文献   

5.
The Monte Orfano Conglomerate (MOC), exposed in the foothills of the Southern Alps (northern Italy), is one of the few outcrops of sediments documenting the Cenozoic tectonic evolution of the Alpine retrowedge. Calcareous nannofossil biostratigraphy allowed us to constrain the upper part of the MOC, formerly attributed to the Early-Middle Miocene in the type-locality, to the earliest Miocene (Neogene part of the NN1 nannofossil zone). A likely latest Oligocene age is therefore suggested for the bulk of the underlying conglomerates, whose base is not exposed. Deposition of the MOC can be placed within the post-collisional tectonic uplift of the Alps, documented in the Lake Como area by the Como Conglomerate (CC) at the base of the Gonfolite Lombarda Group, and supports the correlation with Upper Oligocene clastic sediments cropping out further to the East, in the Lake Garda and in the Veneto-Friuli areas (“molassa”). The remarkable difference in petrographic composition between the western (CC) and eastern (MOC) clastics deposited in the Alpine retro-foreland basin highlights the synchronous tectonic activity of two structural domains involving different crustal levels. Whilst the bulk of the CC, that straddles the Oligocene/Miocene boundary, records largely the tectonic exhumation of the Alpine axial chain crystalline complexes, the coeval MOC consists of detritus derived from the superficial crustal section (Triassic to Paleogene sedimentary rocks) of the Alpine retrowedge and constrains the onset of the post-collisional deformation phase of the Southern Alps as not younger than the Late Oligocene.  相似文献   

6.
Apatite fission-track analyses along a W–E-orientated transect across northern Corsica indicate an important episode of crustal exhumation in late early Miocene time. Samples taken from the Alpine orogenic wedge, from the adjacent foreland basin and from the crystalline basement complex flooring the basin are completely reset. This implies that a ≥ 2.0–2.3-km-thick crustal section made of thrust sheets and/or autochthonous foreland deposits has been removed by erosion since early Miocene time. A geometric projection of this lost cover towards the west indicates that all of northern Corsica was covered either by Alpine nappes or middle Eocene foreland deposits. Fission-track ages are the same across the main boundary fault system separating the Alpine orogenic wedge and the foreland, indicating the absence of significant differential vertical displacement between upper and lower plates during Neogene unroofing.  相似文献   

7.
Oligocene–Miocene chronostratigraphic correlations within the Paratethys domain are still highly controversial. This study focuses on the late Early Miocene of the Swiss and S-German Molasse Basin (Late Burdigalian, Ottnangian–Karpatian). Previous studies have published different chronologies for this time interval that is represented by the biostratigraphically well constrained Upper Marine Molasse (OMM, lower and middle Ottnangian), Upper Brackish Molasse (OBM, Grimmelfingen and Kirchberg Formations, middle and upper Ottnangian to lower Karpatian, MN 4a–MN 4b) and Upper Freshwater Molasse (OSM, Karpatian–Badenian, MN 5). Here, we suggest a new chronostratigraphic framework, based on integrated magneto-litho-biostratigraphic studies on four sections and three boreholes. Our data indicate that the OBM comprises chrons 5D.1r and 5Dn (Grimmelfingen Fm), chron 5Cr (lower Kirchberg Fm) and the oldest part of chron 5Cn.3n (upper Kirchberg Fm). The OSM begins during chron 5Cn.3n, continues through 5Cn, and includes a long reversed segment that can be correlated to chron 5Br. The OMM-OSM transition was completed at 16.0 Ma in the Swiss Molasse Basin, while the OBM-OSM changeover ended at 16.6 Ma in the S-German Molasse Basin. As the lower Kirchberg Fm represents a facies of the Ottnangian, our data suggest that the Ottnangian–Karpatian boundary in the Molasse Basin is approximately at 16.8 Ma, close to the 5Cr–5Cn.3n magnetic reversal, and thus 0.4 Myr younger than the inferred age of 17.2 Ma used in recent Paratethys time scales. Notably, this would not be problematic for the Paratethys stratigraphy, because chron 5Cr is mainly represented by a sedimentation gap in the Central Paratethys. We also realise, however, that additional data is still required to definitely solve the age debate concerning this intriguing time interval in the North Alpine Foreland Basin. We dedicate this work to our dear friend and colleague Jean-Pierre Berger (8 July 1956–18 January 2012).  相似文献   

8.
Low-grade schists from the Slavonian Mountains (Tisia Mega-Unit, Mt Papuk, Croatia), previously assigned to Precambrian to Lower Palaeozoic metamorphism, have been subjected to geochemical investigations, P-T modelling, and in situ age dating of monazite. The studied fine-grained metasediments consist of chlorite (5–15 vol.%), K white-mica (40–55 vol.%), quartz (20–35 vol.%), feldspar (albite 15–20 vol.%), opaques (<2 vol.%), and accessory minerals. According to their whole-rock geochemistry, the detritus of the former sediments came from upper crustal felsic rocks as they occur, for instance, at Mt Papuk. The schists show a complex microtectonic fabric, including well-developed schistosity systems. P-T pseudosections in the system MnNCKFMASHTO, constructed for typical schists of the study area, resulted in peak P-T conditions of 445–465 °C and 4.6–6.0 kbar for a sample from Kutjevo (eastern part of the study area) and 450–460 °C and 5.2–6.0 for a Vranovo sample (western part). Electron microprobe (EMP) dating of monazite in the schists gave a weighted average age of 109.0 ± 13.1 Ma (2σ) eventually with three subgroups of ages at 225 ± 63 (two analyses), 114 ± 24 and 83 ± 22 Ma. We conclude that the metamorphism of the studied schists at depths of c. 20 km is due to an Alpine collisional event.  相似文献   

9.
With the aim of obtaining Tertiary palaeomagnetic directions for the Adriatic Foreland of the Dinaric nappe system, we carried out a palaeomagnetic study on platform carbonates from stable Istria, from the northwestern and the Central Dalmatia segment of imbricated Adria. Despite the weak to very weak natural remanences of these rocks, we obtained tectonically useful palaeomagnetic directions for 25 sites from 20 localities. All exhibit westerly declinations, both before and after tilt correction. Concerning the age of the magnetizations, we conclude that five subhorizontal and magnetite bearing Eocene localities from stable Istria are likely to carry primary remanence, whereas three tilted and hematite-bearing ones were remagnetized. In the northwestern segment of imbricated Adria the cluster of the mean directions improved after tectonic correction indicating pre-tilting magnetization. In contrast, Maastrichtian–Eocene platform carbonates from Central Dalmatian were remagnetized in connection with the late Eocene–Oligocene deformation or Miocene hydrocarbon migration. Based on the appropriate site/locality means, we calculate mean palaeomagnetic directions for the above three areas and suggest an alternative interpretation of the data of Kissel et al. [J. Geophys. Res. 100 (1995) 14999] for the flysch of Central Dalmatia. The four area mean direction define a regional palaeomagnetic direction of Dec=336°, Inc=+52°, k=107, α95=9°. From these data we conclude that stable Istria, in close coordination with imbricated Adria, must have rotated by 30° counterclockwise in the Tertiary, relative to Africa and stable Europe. We suggest that the latest Miocene–early Pliocene counterclockwise rotations observed in northwestern Croatia and northeastern Slovenia were driven by that of the Adriatic Foreland, i.e. the rotation of the latter took place between 6 and 4 Ma.  相似文献   

10.
MAGNETOSTRATIGRAPHIC DATING:IMPLICATIONS FOR TERTIARY EVOLUTION OF THE HOH XIL BASIN, NORTHERN TIBET1 BGMRQ (BureauofGeologyandMineralResourcesofQinghai) .RegionalgeologyofQinghai(inChinesewithEnglishab stract) [M] .Beijing :ChinaGeolPress,1991. 2 CowardWP ,KiddWSF ,Pang,Y ,etal.Thestructureof1985TibetGeotraverse ,LhasatoGolmud.In:Sino BritishComprehensiveGeologicalExpeditionTeamoftheQinghai TibetPlateau.ThegeologicalevolutionoftheQin…  相似文献   

11.
新生代酒西盆地沉积特征及其与祁连山隆升关系的研究   总被引:19,自引:2,他引:17  
酒西盆地普遍缺失上白垩统-始新统,在渐新世晚期开始接受沉积,并形成厚约3.9km的中下第三系一第四系河流相沉积约,不整合覆盖于下白垩统上。渐新统火烧沟组仅在盆地北部出露,往盆地南部尖灭,古流向向南,其物源区应在北部,可能和阿尔金断裂的活动有关。白杨河组全盆均有分布,北祁连山中也有沉积。山中-盆内沉积相由山麓相转变为河湖相,变化明显;古流向大致向北,说明当时祁连山开始隆升,成为白杨河组的物源区。对酒西盆地中、新生界的重矿物进行了系统分析,白杨河组重矿物绝对含量的脉动增加明显,显示白杨河组沉积物源发生变化,原因可能是北祁连山开始隆升,酒西盆地的沉积物源由北转向南侧的祁连山。重矿物的相对含量以及ATi,GZi和ZTR特征值也指示了白杨河组时期矿物成熟度低,构造活动强烈,可能对应着北祁连山的开始隆升。  相似文献   

12.
A detailed integrated stratigraphic study (biostratigraphy and magnetostratigraphy) was carried out on five sections from the western part of the Bavarian Upper Freshwater Molasse of the North Alpine Foreland Basin (NAFB), greatly improving the chronostratigraphy of these sediments. The sections belong to the lithostratigraphic units Limnische Untere Serie (UL) and Fluviatile Untere Serie (UF) and contain 19 (mostly new) small-mammal bearing levels, significantly refining the local biostratigraphy. Radiometric ages obtained from glass shards from tuff horizons are used together with the biostratigraphic information for constructing and confirming the magnetostratigraphic correlation of the studied sections to the Astronomical Tuned Time Scale (ANTS04; Lourens et al. in Geologic Time Scale 2004, Cambridge University Press, 2004). This correlation implies that the UL lithostratigraphic unit corresponds to the latest Ottnangian and the Early Karpatian, whereas the UF corresponds to the Karpatian and the Early Badenian. This indicates that the Brackish- to Freshwater Molasse transition already occurred during the late Ottnangian. The pre-Riesian hiatus occurred in the latest Karpatian and lower Early Badenian in Eastern Bavaria and Bohemia and in the Late Karpatian and earliest Badenian in Western Bavaria. The geochemical and Ar–Ar data of volcanic ashes suggest that highly evolved silicic magmas from a single volcano or volcanic center, characterized by a uniform Nd isotopic composition, erupted repetitively over the course of at least 1.6 Myr. Three phases of eruptive activity were identified at 16.1 ± 0.2 Ma (Zahling-2), 15.6 ± 0.4 Ma (Krumbad), and 14.5 ± 0.2 Ma (Heilsberg, Hegau). The correlation of the local biostratigraphic zonation to the ANTS04 enables further the characterization of both the Ottnangian–Karpatian and Karpatian–Badenian boundaries in the NAFB by small-mammal biostratigraphy. According to these results the Ottnangian–Karpatian boundary is contemporaneous with the first appearance datum of Megacricetodon bavaricus (in the size of the type population) and the first common occurrence of Keramidomys thaleri, whereas Ligerimys florancei, Melissiodon dominans and Prodeinotherium aff. bavaricum have been already disappeared during the late Ottnangian. The Karpatian–Badenian boundary is characterized by a significant size increase of the large Megacricetodon lineage and possibly a (re-)immigration of Prodeinotherium bavaricum.  相似文献   

13.
Detrital zircon U–Pb age distributions derived from samples representing ancient or relatively young large-scale continental drainage networks are commonly taken to reflect the geochronological evolution of the tapped continental area. Here, we present detrital zircon U–Pb ages and associated heavy mineral data from Pleistocene Rhine River Middle Terrace sands and equivalents between the Swiss–German border and Cologne in order to test the commonly assumed Alpine provenance of the material. Samples from eight localities were analyzed for their heavy mineral assemblages. Detrital zircon U–Pb ages were determined by laser ablation inductively coupled mass spectrometry on selected samples from five locations along the Rhine River. The zircon age populations of all samples show a similar distribution, their main peaks being between 300 and 500 Ma. Minor age populations are recognized at 570 and 1,070 Ma. The 300–400 Ma maximum reflects the Variscan basement drained by or recycled into the Rhine River and its tributaries. The 400–500 Ma peak with predominantly Early Silurian ages points to Baltica or to the mid-German crystalline rise as original sources. One distinct peak at c. 570 Ma probably represents input from Cadomian terranes. The Precambrian U–Pb ages are compatible with derivation from sources in Baltica and in northern Gondwana. The heavy mineral populations of Middle Terrace sands and equivalents are characterized to a variable extend by garnet, epidote, and green hornblende. This association is often referred to as the Alpine spectrum and is considered to be indicative of an Alpine provenance. However, hornblende, epidote, and garnet are dominant heavy minerals of collisional orogens in general and may also be derived from Variscan and Caledonian units or from intermittent storage units. A remarkable feature of the detrital zircon age distribution in the Rhine River sediments from the Swiss–German border to Cologne is the absence of ages younger than 200 Ma and in particular of any ages reflecting the Alpine orogeny between c. 100 and 35 Ma. Sediments from rivers draining the equally collisional Himalaya orogen contain detrital zircons as young as 20 Ma. Our results question the assumption that Pleistocene Rhine River sediments were directly derived from the Alps. The lag time between the formation and deposition age of the youngest zircon in the studied Pleistocene Rhine River deposits is 200 Ma. Together with the absence of Alpine zircon ages, this stresses that detrital zircon age data from ancient sedimentary units found in poorly understood tectonic or paleogeographic settings need to be interpreted with great care, one could miss an entire orogenic cycle.  相似文献   

14.
Paleomagnetic data for the Cretaceous volcanic and sedimentary rocks in the Andean region of Peru are given. Reliable paleomagnetic field directions were obtained for three Cretaceous (Albian to Cenomanian) formations from calcareous sediments in northern Peru. Stable remanent magnetization directions were also derived from twelve Cretaceous lava flows and dikes in coastal Peru. Paleomagnetic data of the same age from the stable areas of South America such as Brazil demonstrate that the paleomagnetic poles are nearly coincident with the present pole, but Peruvian paleomagnetic directions studied here showed several tens of degrees of counterclockwise declination shifts. This suggests counterclockwise tectonic rotation of an extensive block which includes the whole of Andean Peru.  相似文献   

15.
We are reporting the first paleomagnetic results from the Podhale Flysch, which crops out in the area between the Pieniny Klippen Belt and the Tatra Mts., where claystones and mudstones were drilled at 10 localities, mainly from subhorizontal strata. In all cases, the magnetic fabric was found to be typical of undeformed sediments, with well developed magnetic lineation (aligned with the sedimentary transport direction) at some of the localities; the dominant magnetic mineral was identified as magnetite, accompanied by iron sulphides. For six of the localities, with one exception for those with poorly developed lineation, we obtained statistically well-defined paleomagnetic mean directions, on AF or on combined AF and thermal demagnetization.The overall-mean paleomagnetic direction is D=298° 1=53° k=121, a95=6°, in tectonic coordinates. Similar direction was observed for Inner Carpathian flysch from the Levoča basin (Slovakia). We conclude, that the flysch of the two basins must have travelled a few hundred kilometres to the North, after the early Miocene tectonic phase: this displacement was accompanied by about 60° counterclockwise rotation with respect to Stable Europe.  相似文献   

16.
《Earth》2006,74(3-4):127-196
Research on neotectonics and related seismicity has hitherto been mostly focused on active plate boundaries that are characterized by generally high levels of earthquake activity. Current seismic hazard estimates for intraplate domains are mainly based on probabilistic analyses of historical and instrumental earthquake catalogues. The accuracy of such hazard estimates is limited by the fact that available catalogues are restricted to a few hundred years, which, on geological time scales, is insignificant and not suitable for the assessment of tectonic processes controlling the observed earthquake activity. More reliable hazard prediction requires access to high quality data sets covering a geologically significant time span in order to obtain a better understanding of processes controlling on-going intraplate deformation.The Alpine Orogen and the intraplate sedimentary basins and rifts in its northern foreland are associated with a much higher level of neotectonic activity than hitherto assumed. Seismicity and stress indicator data, combined with geodetic and geomorphologic observations, demonstrate that deformation of the Northern Alpine foreland is still on-going and will continue in the future. This has major implications for the assessment of natural hazards and the environmental degradation potential of this densely populated area. We examine relationships between deeper lithospheric processes, neotectonics and surface processes in the northern Alpine Foreland, and their implications for tectonically induced topography.For the Environmental Tectonics Project (ENTEC), the Upper and Lower Rhine Graben (URG and LRG) and the Vienna Basin (VB) were selected as natural laboratories. The Vienna Basin developed during the middle Miocene as a sinistral pull-apart structure on top of the East Alpine nappe stack, whereas the Upper and Lower Rhine grabens are typical intracontinental rifts. The Upper Rhine Graben opened during its Late Eocene and Oligocene initial rifting phase by nearly orthogonal crustal extension, whereas its Neogene evolution was controlled by oblique extension. Seismic tomography suggests that during extension the mantle-lithosphere was partially decoupled from the upper crust at the level of the lower crust. However, whole lithospheric folding controlled the mid-Miocene to Pliocene uplift of the Vosges–Black Forest Arch, whereas thermal thinning of the mantle–lithosphere above a mantle plume contributed substantially to the past and present uplift of the Rhenish Massif. By contrast, oblique crustal extension, controlling the late Oligocene initial subsidence stage of the Lower Rhine Graben, gave way to orthogonal extension at the transition to the Neogene.The ENTEC Project integrated geological, geophysical, geomorphologic, geodetic and seismological data and developed dynamic models to quantify the societal impact of neotectonics in areas hosting major urban and industrial activity concentrations. The response of Europe's intraplate lithosphere to Late Neogene compressional stresses depends largely on its thermo-mechanical structure, which, in turn, controls vertical motions, topography evolution and related surface processes.  相似文献   

17.
The Paleogene and Neogene evolution of Austroalpine basement units east of the Tauern Window is characterised by the formation of two major sets of faults: (1) ESE–WNW- to E–W-trending faults, associated with ENE- and NNW-trending conjugate structures and (2) N–S to NNE-SSW striking structures, mainly acting as high-angle normal faults, often associated with E-dipping low-angle normal faults along the western margin of the Styrian Basin.Together with the stratigraphic evolution of the Styrian and Lavanttal Basins and the related subsidence histories a tectonic evolution may be reconstructed for this part of the Eastern Alps. In the southern part of the Koralm Massif, WNW-trending fractures were activated as dextral strike-slip faults, associated with the evolution of WNW-trending troughs filled up with coarse block debris. W- to WNW-trending fractures were reactivated as normal faults, indicating N–S extension. It is assumed that these phases resulted in subsidence and block debris sedimentation in Karpatian and Badenian times (ca. 17–13 Ma).In the Western Styrian Basin no Sarmatian (13–11.5 Ma) sediments are observed; Pannonian (11.5 to 7.1 Ma) sediments are restricted to the Eastern Styrian Basin. This indicates, that the Koralm basement and the Western Styrian Basin were affected by post-Sarmatian uplift, coinciding with a re-activation of N-trending normal faults along the eastern margin of the Koralm Massif. Therefore, we suggest that the final uplift of the Koralm Complex, partly together with the Western Styrian Basin, occurred during the early Pannonian (at approximately 10 Ma). The elevation of clastic deposits indicates that the Koralm Complex was elevated by approximately 800 m during this phase, associated with an additional phase of E–W-directed extension accommodated by N–S striking normal faults.  相似文献   

18.
According to major discontinuities, continental deposits in the Cenozoic Atlas basins are subdivided into three groups (pre-, syn- and post-tectonic). Progressive unconformities are the main characteristic of the syntectonic formations, implying that the Atlas tectonic episode is synchronous with Neogene and Quaternary sedimentation. This tectonic episode is responsible for the inversion of Early Mesozoic extensional structures within the basement, which were reactivated into symmetrical thrusts or transpressional faults. Shortening of the basement induced the detachment of the cover. Deformation of the cover is expressed by thrust faults (with southern and northern vergences), folds and flexures linked to blind thrusts. Kinematic data show that the main regional compression was directed N150 ± 10° during the Neogene and north-south during the Quaternary. The involvement of the upper crust, in the Alpine Atlasic Belt, contributed to create areas of high relief. The High Atlas can be interpreted as resulting from large Cenozoic thrusts, and compared with the Pyrenean Axial Zone, although their pre-Cenozoic histories can differ markedly.  相似文献   

19.
Marine diatomaceous siliceous sediments in Neogene sections of northern Japan contrast with the Monterey Shale of California in containing many intercalations of acidic volcaniclastic sediments. Diagenesis of these sediments from deep boreholes and surface sections was investigated. Three diagenetic zones—biogenic opal, opal-CT and quartz zones—are recognized in siliceous sediments, corresponding roughly to amorphous silica, low cristobalite and quartz zones in acidic vitric volcaniclastic sediments. Opal-CT consists almost exclusively of silica and water, while low cristobalite contains appreciable amounts of A1, Ca, Na and K. In subsurface sections, values of d(101) spacing of opal-CT decrease progressively with increasing burial depth. The progressive ordering is not associated with additional silica cementation. In surface sections, the behaviour of d(101) spacing is complicated owing to the modification of the progressive ordering developed during burial diagenesis by later silica cementation during uplift. The cementing opal-CT is probably precipitated from percolating groundwater which dissolves siliceous skeletons in porous diatomaceous mudstones overlying the opal-CT porcellanite. Opaline cherts that form during burial diagenesis are designated as early opaline chert, while those which form during uplift are later opaline chert. The later opaline chert contains two groups of opal-CT; one is progressively ordered opal-CT and the other is additionally cemented opal-CT with higher d(101) spacing than that in the host porcellanite. In diatomaceous siliceous sediments, early opaline chert is scarce. Most, if not all, opaline cherts in surface sections are of later origin.  相似文献   

20.
The occurrence of the genus Aquilapollenites in Upper Cretaceous and Neogene sediments of northwestern Pakistan is reported here. Aquilapollenites amplus, Aquilapollenites reductus, and Aquilapollenites sp. occur in the Maastrichtian palynomorph assemblage from an outcrop sample of the Mir Ali section, northern Waziristan. Aquilapollenites medeis in the Neogene Murgha Faqir Zai Formation of the Pishin Basin, Balochistan, is considered a reworked Cretaceous specimen. The Upper Cretaceous sediments of the Asian plate on the Tethys margin are considered to be the source of Aquilapollenites spp. in these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号