首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   0篇
测绘学   2篇
大气科学   18篇
地球物理   58篇
地质学   159篇
海洋学   11篇
天文学   33篇
综合类   2篇
自然地理   10篇
  2016年   7篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   11篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   15篇
  2004年   10篇
  2003年   8篇
  2002年   12篇
  2001年   5篇
  2000年   11篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1969年   3篇
  1967年   5篇
  1966年   4篇
  1965年   2篇
  1964年   4篇
  1963年   3篇
  1962年   2篇
  1961年   2篇
  1960年   5篇
  1959年   2篇
  1956年   3篇
  1940年   3篇
排序方式: 共有293条查询结果,搜索用时 31 毫秒
1.
Yb-Y inter-diffusion along a single grain boundary of a synthetic yttrium aluminium garnet (YAG) bicrystal has been studied using analytical transmission electron microscopy (ATEM). To investigate the diffusion, a thin-film containing Yb as the diffusant was deposited perpendicular to the bicrystal grain boundary by pulsed laser deposition (PLD). Structural properties and their change with time in both the diffusant source and the grain boundary are reported. The diffusion profiles are incorporated in a numerical diffusion model, which is applied to determine the grain boundary diffusion coefficient, D gb , at 1.723 K it is equal to 3 × 10−15 m2/s. We find that grain boundary diffusion is 4.85 orders of magnitude faster than volume diffusion, which was determined from the same diffusion experiment. This result is discussed in the context of special versus general grain boundaries. Finally, we successfully tested the capability of synchrotron-based nano-X-ray fluorescence analysis to map micro-chemical patterns in two dimensions with sub-micrometre resolution.  相似文献   
2.
Part I of this contribution (Gardés et al. in Contrib Mineral Petrol, 2010) reported time- and temperature-dependent experimental growth of polycrystalline forsterite-enstatite double layers between single crystals of periclase and quartz, and enstatite single layers between forsterite and quartz. Both double and single layers displayed growth rates decreasing with time and pronounced grain coarsening. Here, a model is presented for the growth of the layers that couples grain boundary diffusion and grain coarsening to interpret the drop of the growth rates. It results that the growth of the layers is such that (Δx)2 ∝ t 1−1/n , where Δx is the layer thickness and n the grain coarsening exponent, as experimentally observed. It is shown that component transport occurs mainly by grain boundary diffusion and that the contribution of volume diffusion is negligible. Assuming a value of 1 nm for the effective grain boundary width, the following Arrhenius laws for MgO grain boundary diffusion are derived: log D gb,0Fo (m2/s) = −2.71 ± 1.03 and E gbFo = 329 ± 30 kJ/mol in forsterite and log D gb,0En (m2/s) = 0.13 ± 1.31 and E gbEn = 417 ± 38 kJ/mol in enstatite. The different activation energies are responsible for the changes in the enstatite/forsterite thickness ratio with varying temperature. We show that significant biases are introduced if grain boundary diffusion-controlled rim growth is modelled assuming constant bulk diffusivities so that differences in activation energies of more than 100 kJ/mol may arise. It is thus important to consider grain coarsening when modelling layered reaction zones because they are usually polycrystalline and controlled by grain boundary transport.  相似文献   
3.
4.
5.
Homogeneous single crystals of synthetic monticellite with the composition \({\text{Ca}}_{0.88}{\text{Mg}}_{1.12}{\text{SiO}}_4\) (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and \(1200\,^{\circ }\hbox {C}\), pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at \(1000\,^{\circ }\hbox {C}\) to 1200 nm at \(1100\,^{\circ }\hbox {C}\) in Sy I, and from 300 nm at \(1000\,^{\circ }\hbox {C}\) to 700 nm at \(1200\,^{\circ }\hbox {C}\) in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.  相似文献   
6.
This study aims at sharpening the existing knowledge of expected seasonal mean climate change and its uncertainty over Europe for the two key climate variables air temperature and precipitation amount until the mid-twentyfirst century. For this purpose, we assess and compensate the global climate model (GCM) sampling bias of the ENSEMBLES regional climate model (RCM) projections by combining them with the full set of the CMIP3 GCM ensemble. We first apply a cross-validation in order to assess the skill of different statistical data reconstruction methods in reproducing ensemble mean and standard deviation. We then select the most appropriate reconstruction method in order to fill the missing values of the ENSEMBLES simulation matrix and further extend the matrix by all available CMIP3 GCM simulations forced by the A1B emission scenario. Cross-validation identifies a randomized scaling approach as superior in reconstructing the ensemble spread. Errors in ensemble mean and standard deviation are mostly less than 0.1 K and 1.0 % for air temperature and precipitation amount, respectively. Reconstruction of the missing values reveals that expected seasonal mean climate change of the ENSEMBLES RCM projections is not significantly biased and that the associated uncertainty is not underestimated due to sampling of only a few driving GCMs. In contrast, the spread of the extended simulation matrix is partly significantly lower, sharpening our knowledge about future climate change over Europe by reducing uncertainty in some regions. Furthermore, this study gives substantial weight to recent climate change impact studies based on the ENSEMBLES projections, since it confirms the robustness of the climate forcing of these studies concerning GCM sampling.  相似文献   
7.
Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (?25 to ?32?‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (?59 to ?51?‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9?‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.  相似文献   
8.
Ultramafic rocks and gabbros are exposed in the southern Puna (NW Argentina) in tectonic association with continental arc-related Ordovician (volcano) sedimentary successions and granitoids. The origin of this mafic rock suite has been debated for three decades as either representing an Ordovician terrane suture, primitive Ordovician arc-related rocks or relics of the pre-Ordovician basement in tectonic contact with the Ordovician retro-arc basin successions. We present the first U–Pb ages of primary and inherited zircon from gabbros of this mafic–ultramafic assemblage. LA-ICP-MS analyses on cores and rims of these zircon grains yielded a concordia age of 543.4 ± 7.2 Ma for the gabbroic rocks. Other analysed zircons have Mesoproterozoic, and Early Ediacaran core and rim ages indicating that the magmas also assimilated Meso- and Neoproterozoic crustal material prior to final crystallization. The mafic rocks witnessed higher metamorphic grade than associated Ordovician rocks, which are unmetamorphosed or only affected by anchimetamorphism. The gabbros are mostly tholeiitic and enriched in Zr, Th, as well as other incompatible elements and have εNd t=540Ma ranging from 1.3 to 7.4 with most of the values between 5 and 7. 147Sm/144Nd ratios show evidence of weak crustal contamination. The mafic rocks do not reveal any affinity to mid-ocean ridge basalts in their geochemistry but point instead to an emplacement in an active plate margin arc environment. Chromites from ultramafic rocks show typical Ti, Al, Cr#, Fe3+ abundances found in magmatic arc rocks. The formation of the gabbros and the associated ultramafic rocks in the southern Argentine Puna is related to the evolution of the margin of the Pampia terrane, including the Puncoviscana basin, during the Late Neoproterozoic and earliest Cambrian. In contrast to previous interpretations, the rocks predate the Ordovician evolution of the Central proto-Andean active margin. Consequently, interpretations assuming these rocks to represent an oceanic terrane suture of Ordovician age have to be dismissed as much as all palaeotectonic models that define Ordovician terranes in the Central Andes based on assumption that the ultramafic rocks and gabbros exposed in the southern Puna mark plate boundaries.  相似文献   
9.
10.
Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry Mo deposit. Molybdenum mineralisation at Questa occurred in two superimposed hydrothermal stages, a magmatic-hydrothermal breccia and later stockwork veining. In both stages, texturally earliest fluids were single-phase, of low salinity (~7 wt.% NaClequiv.) and intermediate-density. Upon decompression to ~300 bar, they boiled off a vapour phase, leaving behind a residual brine (up to 45 wt.% NaClequiv) at temperatures of ~420°C. The highest average Mo concentrations in this hot brine were ~500 μg/g, exceeding the Mo content of the intermediate-density input fluid by about an order of magnitude and reflecting pre-concentration of Mo by fluid phase separation prior to MoS2 deposition from the brine. Molybdenum concentrations in brine inclusions, then, decrease down to 5 μg/g, recording Mo precipitation in response to cooling of the saline liquid to ~360°C. Molybdenite precipitation from a dense, residual and probably sulphide-depleted brine is proposed to explain the tabular shape of the ore body and the absence of Cu-Fe sulphides in contrast to the more common Cu-Mo deposits related to porphyry stocks. Cesium and Rb concentrations in the single-phase fluids of the breccia range from 2 to 8 and from 40 to 65 μg/g, respectively. In the stockwork veins, Cs and Rb concentrations are significantly higher (45–90 and 110–230 μg/g, respectively). Because Cs and Rb are incompatible and hydrothermally non-reactive elements, the systematic increase in their concentration requires two distinct pulses of fluid exsolution from a progressively more fractionated magma. By contrast, major element and ore metal concentrations of these two fluid pulses remain essentially constant. Mass balance calculations using fluid chemical data from LA-ICPMS suggest that at least 25 km3 of melt and 7 Gt of deep input fluid were necessary to provide the amount of Mo contained in the stockwork vein stage alone. While the absolute amounts of fluid and melt are uncertain, the well-constrained element ratios in the fluids together with empirical fluid/melt partition coefficients derived from the inclusion analyses suggest a high water content of the source melt of ~10%. In line with other circumstantial evidence, these results suggest that initial fluid exsolution may have occurred at a confining pressure exceeding 5 kbar. The source of the molybdenum-mineralising fluids probably was a particularly large magma chamber that crystallised and fractionated in the lower crust or at mid-crustal level, well below the shallow intrusions immediately underlying Questa and other porphyry molybdenum deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号