首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
从地球流体运动浅水模式的非线性方程出发,采用行波分析法给出了平面自治系统,利用相图理论,讨论了行波解的性质,提出了平面非线性系统不存在孤立波的结论;利用K-B平均法,首次获得有限振幅惯性重力波以Rossby数作为控制参量的非线性频散关系。  相似文献   

2.
根据地球流体力学基本方程组,在密度垂直层结的情况下,引进行波坐标,研究非线性定形波在相平面上的几何拓扑结构。严格论证了不存在定形孤立波,并通过Hamilton函数及其角作用变把行波系统化成最简形式,由此而得到非线性惯性重力内波的解析解。  相似文献   

3.
本文第一部分利用未作无旋和静压假定的线性波动方程求得了现有波动的统一解.本文的这一部分对未作静压假定的线性长波方程作了进一步讨论.求得了ω=f时的所有解.也求得了ωf时的Sverdrup波和Poincaré波的统一解,但它们代表的波动具有不同的速度铅直结构.这一组解不包含在作了静压假定的线性长波方程中,因而被看作是被静压假定滤掉的可能波动.  相似文献   

4.
本文从流体力学基本方程组出发,在非地转条件下导得了分层海洋的内孤立波方程—Kbv和mKdv方程,证实了在非地转条件下,一类海洋非线性波动是可以严格满足内孤立波方程的。在地转条件下采用f平面近似导出了KdV方程的演化形式一有源KdV方程,地转的影响含于源项中。由初步的分析得出,f对KdV方程的影响是微弱的。由已得的KdV和mKdV方程的解可知,内孤立波与线性波有着本质差别。  相似文献   

5.
Rossby波是由行星涡度随纬度变化引起的一种波动,它是地球流体中大尺度运动的主要波动之一.  相似文献   

6.
用微扰动方法对旋转地球上不可压缩流体的控制方程组进行线性化,得到了扰动解和流体界面上惯性重力波的频率方程。表面惯性重力波和惯性重力内波的相速公式都是这个更普遍的频率方程的特殊情况。  相似文献   

7.
旋转着的地球周围的大气和海洋中的行星尺度流场的描述,固然可以采用较精确的球坐标系统[1],但是,更方便、更经常采用的却是所谓“f-平面”和“B-平面”坐标系[2]。譬如大气中Rossby波的引入[3]、大洋环流的西向强化的揭示[4]都是利用了B-坐标系。  相似文献   

8.
多次波衰减是地震资料处理中的一个难题。经过不懈研究,地球物理学家提出了多种压制多次波的方法。归纳起来主要有两种处理思路:①基于有效波与多次波的速度、频率、周期性存在差异的滤波法;②基于波动理论的预测减去法。介绍了基于两种思路的6种常用的多次波压制方法,探讨了方法的适用性。  相似文献   

9.
用微扰动方法对旋转地球上不可压缩流体的控制方程组进行线性化,得到了扰动解和流体界面上惯性重力波的频率方程。表面惯性重力波和惯性重力内波的相速公式都是这个更普遍的频率方程的特殊情况。  相似文献   

10.
沿岸流不稳定性的实验研究及理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
任春平  邹志利 《海洋学报》2008,30(5):113-123
在坡度为1:40的平面斜坡上进行了单向不规则波的沿岸流不稳定运动实验,观测到了沿岸流的周期性波动(波动周期约为100 s)。利用最大熵方法和三角函数回归法求得这种波动的主频率以及幅值,分析了波动幅值在垂直岸线方向的变化,结果表明该变化与沿岸流变化类似,即在沿岸流最大值附近这种波动强度最大。为了分析波动的机理,利用线性沿岸流不稳定模型对模型实验结果进行了分析,求得了不稳定运动增长模式和波动周期,并与对应实测结果进行了比较,结果表明,计算结果与实测值符合,从而说明实验中观测到的这种周期性波动为沿岸流不稳定引起的剪切波。  相似文献   

11.
THE NONLINEAR INTERNAL GRAVITY WAVES IN STRATIFIED FLUID   总被引:1,自引:0,他引:1  
In this paper, starting from the equations of the nonlinear internal gravity waves in stratified fluid, using the method of the Taylor expansion nearby the equilibrium point for the nonlinear terms, we find the analytical solutions for nonlinear internal gravity waves. The linear internal gravity waves and solitary waves are its special cases. The nonlinear internal gravity waves satisfy the well-known KdV (Karteweg-de Vries) equation. The nonlinear internal gravity waves are different from linear waves in character. The former dispersive relation contains the amplitude, but the latter does not. The larger the amplitude and the wavelength the faster are waves for the nonlinear internal gravity waves. The smaller the stability of the stratification, the larger is the wavelength (or the width). Some phenomena such as squall line, cumulus, turbulent mass structure in atmosphere, and thermocline in ocean have these natures.  相似文献   

12.
The effects of short waves on the propagration of velocity discontinuity along the interface of two uniform potential vorticity, zones on anf-plane is examined. It is shown, using a multiple scale analysis, that the dispersion introduced by the short waves can balance the nonlinear steepening effects predicted by the semigeostrophic theory. The time evolution of a shear disturbance along the front is governed by a Korteweg-de Vries equation. Numerical solutions of the solitary waves along the front are presented.  相似文献   

13.
考虑了均匀剪切流场中强非线性界面波,建立了基于任意水深处速度而不是通常所用的平均速度为速度变量的模型,分析了其色散关系,并求得了各层速度的二阶渐近解和界面内波波面位移的二阶Stokes解,揭示了波流之间的非线性相互作用和界面波解之间的非线性相互作用。  相似文献   

14.
An analytical solution using homotopy analysis method is developed to describe the nonlinear progressive waves in water of finite depth. The velocity potential of the wave is expressed by Fourier series and the nonlinear free surface boundary conditions are satisfied by continuous mapping. Unlike the perturbation method, the present approach is not dependent on small parameters. Thus solutions are possible for steep waves. Furthermore, a significant improvement of the convergence rate and region is achieved by applying Homotopy-Padé Approximants. The calculated wave characteristics of the present solution agree well with previous numerical and experimental results.  相似文献   

15.
16.
《Coastal Engineering》2004,50(4):169-179
Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied.  相似文献   

17.
The nonlinear interactions of waves with a double-peaked power spectrum have been studied in shallow water.The starting point is the prototypical equation for nonlinear unidirectional waves in shallow water,i.e.the Korteweg de Vries equation.By means of a multiple-scale technique two defocusing coupled Nonlinear Schrdinger equations are derived.It is found analytically that plane wave solutions of such a system are unstable for small perturbations,showing that the existence of a new energy exchange mechanism which can influence the behavior of ocean waves in shallow water.  相似文献   

18.
The accurate generation and absorption of water waves in phase-resolving models are critical issues in representing nearshore processes. Here, we present a source function method for combined wave generation and absorption using modified sponge layers. This technique can be easily adapted to a wide variety of systems, and does not require the solution of Green's functions but rather the simpler knowledge of solutions for free waves. These solutions may be linear or nonlinear, regular or irregular, and generated waves can be made arbitrarily accurate through simple selection of sponge layer coefficients. Generating–absorbing sponge layer systems are shown to have a close correspondence to relaxation zones for wave generation if relaxation coefficients are chosen appropriately.  相似文献   

19.
-Nonlinear tidal waves in a kind of estuary are studied in the paper using one-dimensional nonlinear hydrody-namic equations with friction. The estuary has exponentially varying width B=B0 e-bx and uniform depth h. The one-dimensional hydrodynamic equations are solved by perturbation method. It was found that our solution included two special cases, Pelisenpeki's solution and Airy's solution. The former can be got by letting b=0 in our solutions, and the latter by setting 6 = 0 and f= 0 (f is linear frictional coefficient). In terms of the second-order solution, the physical mechanism of nonlinear tidal waves in estuaries with gradually varying cross-section is explored. It is shown that, under the assumption of linear friction coefficient, shallow water constituent waves consist of two parts, one is produced by shallow water nonlinear effect outside the estuary, the other is generated by shallow water nonlinear effect inside estuary. In addition, the physical mechanism of the residual tidal current and  相似文献   

20.
Weakly nonlinear quasi-geostrophic planetary waves on a beta-plane and topographic waves over a linearly inclined bottom are examined by use of shallow water equations for a small beta parameter. Long solitary wave solutions missed by the use of the traditional quasi-geostrophic approximation are found in a channel ocean with neither a sheared current nor a curved (non-linearly inclined) bottom topography. The solutions are missed in the traditional approach because the irrotational motion associated with the geostrophic divergence is neglected by the quasi-geostrophic approximation. Another example which calls attention to the limitation of the traditional quasi-geostrophic approximation is the nonlinear evolution of divergent planetary eddies whose scale is much larger than the Rossby's radius of deformation. Some aspects of a new evolution equation are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号