首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Livshits  M. A. 《Solar physics》1997,173(2):377-381
Recent observations have provided much real information about the acceleration of particles in solar flares. High-reliability data about accelerated particles have been obtained for an impulsive phase of some flares of the activity cycle XXII. Therefore, it seems reasonable to re-estimate the amount of Li atoms produced in the upper photospheric layers by – reactions. A value of 5 × 10 29 nuclei during the largest impulsive solar events has been found from calculations for the thick-target model. This agrees with observations of the line of lithium. In conclusion, the probability of enhanced Li absorption observed after large impulsive flares in the sunspot penumbra is discussed.  相似文献   

2.
The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about \(0.04\,\mbox{--} \,2~\mbox{MeV}/\mbox{nucleon}\)) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the \({\sim}\,80\,\mbox{--}\,320~\mbox{keV}/\mbox{nucleon}\) Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.  相似文献   

3.
ROTH  I. 《Solar physics》1997,172(1-2):297-305
The isotopic ratio of 3He/4He, which is routinely measured in the solar wind, on meteorites and in different astrophysical environments, is confined to several times 10-4. However, in impulsive solar flares this ratio reaches often values larger than unity. The evolution of this ratio from the primordial nucleosynthesis to the present solar conditions is sketched and the resonant plasma effects which enhance spectacularly the abundance of 3He in the impulsive solar flares are described.  相似文献   

4.
The observed effects of solar flares and interplanetary sector crossings seem to indicate that particle precipitation in the Earth's upper atmosphere decreases cyclonic activity in the troposphere. As an extrapolation to longer term effects, it is suggested that the recurrence of prolonged periods of enhanced solar wind particle precipitation in the upper atmosphere during alternate solar minima could cause the recurrence of extreme droughts.  相似文献   

5.
Eric D. Feigelson 《Icarus》1982,51(1):155-163
Recent observations of soft X-ray emission from solar-type stars obtained with the Einstein X-Ray Observatory indicate that X-ray luminosity is inversely correlated with stellar age. If this result is applied to the Sun and if X-ray emission is a valid indicator of other manifestations of solar activity, then past solar wind and flare levels can be inferred. It can qualitatively explain the excess xenon and nitrogen found in the lunar regolith compared to the level expected from the comteporary solar wind. X-Ray emission from T Tauri and other low-mass pre-main-sequence stars is both highly luminous and variable, indicating the presence of flares ~4 × 103 times stronger than the largest flares seen in the contemporary Sun. The proton flux from such solar flares during the 106 to 107-year pre-main-sequence phase would be sufficient to account for the 26Al anomaly n meteorites.  相似文献   

6.
We find that gamma-ray line (GRL) emissions start later than the hard X-ray (HXR) emissions during impulsive and extended solar flares. Starting delay is more in the case of extended solar flares suggesting a slow acceleration of electrons and ions, in comparison to impulsive solar flares which indicate different acceleration mechanism for impulsive and extended solar flares. We further infer that during solar flares, electrons and ions are accelerated simultaneously and the delay between HXR and GRL emissions results mainly due to differences in acceleration times of electrons and ions to attain energies required for producing HXR emissions for electrons and GRL emissions for ions. Therefore, we are of view that a single step acceleration mechanism may work in solar flares.  相似文献   

7.
Flux measurements of solar energetic particles (SEPs) in the ERNE instrument onboard SOHO indicate that the abundance of 4He-nuclei compared to protons in the energy range up to 100 MeV nucl–1 was exceptionally high during the particle events on 27 May 1998 and 28 December 1999. The 4He/p ratio stayed between 0.15–0.50 for more than ten hours. There was also a prolonged enhancement in helium-3, 3He/4H 1%. Observations of EIT and LASCO on board SOHO confirm that the originators of both SEP events were western eruptions, flares and coronal mass ejections (CMEs). The onset of the SEP release took place close to the maximum of flares which were probably triggered by the rising CMEs. The observations suggest that the SEP events were started with the flare-(pre)accelerated particles, but impact of the CME-associated shocks might explain the continuation and modification of the helium and proton fluxes well after the flare production. These observations support the idea that the helium enhancements in the CME-associated events reflect the availability of seed particles that originate previously in flares.  相似文献   

8.
Ramaty  R. 《Solar physics》1982,113(1-2):203-215
A detailed review of nuclear processes and particle acceleration in solar flares has been completed recently (Ramaty and Murphy, 1987). Included in this review were a comprehensive discussion of the theory of gamma-ray and neutron production, as well as the results of comparisons of calculations with gamma-ray, neutron and charged-particle observations of solar flares. The implications of these comparisons on particle energy spectra, total numbers, anisotropies and electron-to-proton ratios, as well as on acceleration mechanisms and the interaction site were also discussed. In addition, elemental and isotopic abundances of the ambient gas, derived from gamma-ray observations, were compared to abundances obtained from observations of escaping accelerated particles and other sources. The present paper is a synopsis of this review  相似文献   

9.
It has previously been suggested that the very high relative abundances of helium occasionally observed in the solar wind mark the plasma accelerated by major solar flares. To confirm this hypothesis, we have studied the 43 spectra with He/H 15% that were observed among 10300 spectra collected by Vela 3 between July 1965–July 1967. The 43 spectra were distributed among 16 distinct periods of helium enhancement, 12 of which (containing 75% of the spectra) were associated with solar flares. Six new flare-enhancement events are discussed in this paper. It is concluded that the association of helium enhancements with major flares is real, non-random and very strong.With this study, there are 12 cases of reliable associations between helium enhancements (He/H 15%) and flares reported in the literature. The general characteristics of these events are discussed. It is found that the flares are typically large and bright (2B or 3B), often they produce cosmic ray protons, and they are widely distributed in solar longitude. The average transit velocity of the pistons (i.e., flare accelerated driver gas) is in excellent agreement with earlier observations of flare shock velocities. The degree to which the pistons have been slowed in transit is in good agreement with theory. The average percentage of helium in the enhanced regions is 15%, but this number should not be considered more than an extremely rough estimate because of very arbitrary decisions that had to be made as to when we would consider an enhancement had ended. The number of positively charged particles in the enhanced region is estimated to be of the order of 4 × 1039.A qualitative discussion of some of the possibilities for the source of helium enhanced plasma is presented. It is suggested that the helium enriched plasma may be the piston producing the shock causing the Type II radio emission. The size of the Type II emission region and the number of particles in the helium enhancement permit an estimate to be made of the density of the corona at the origin of the piston. From this it is estimated further that the piston must come from below about 0.5 R , in agreement with the 0.2–0.3 R often given for the initial height of the Type II emission source. Recent theoretical discussions have indicated that the corona as a whole can be expected to show helium enrichments at these levels.It is pointed out that observations of solar wind helium enhancement can be expected to be a useful tool in studying the distribution and relative abundance of helium in different layers of the solar corona, as well as mechanisms for the acceleration of plasma by solar flares.  相似文献   

10.
Ramaty  R. 《Solar physics》1987,113(1-2):203-215

A detailed review of nuclear processes and particle acceleration in solar flares has been completed recently (Ramaty and Murphy, 1987). Included in this review were a comprehensive discussion of the theory of gamma-ray and neutron production, as well as the results of comparisons of calculations with gamma-ray, neutron and charged-particle observations of solar flares. The implications of these comparisons on particle energy spectra, total numbers, anisotropies and electron-to-proton ratios, as well as on acceleration mechanisms and the interaction site were also discussed. In addition, elemental and isotopic abundances of the ambient gas, derived from gamma-ray observations, were compared to abundances obtained from observations of escaping accelerated particles and other sources. The present paper is a synopsis of this review

  相似文献   

11.
From IPS and spacecraft measurements of the solar wind combined with geomagnetic observations, we identify the passage of three main disturbances through the solar wind from solar flares on August 2, 4 and 7. From a detailed study of the IPS data covering the third event, we conclude that the extent of the disturbance front at 1 AU covered about ±60° in longitude and more than 30° in latitude from the flare normal. If interpreted as a blast wave according to the model of De Young and Hundhausen (1971), the disturbance was ejected from the Sun into a cone of half-angle 45°±15°.  相似文献   

12.
Heat transport is considered both for quiet and disturbed solar winds. It is shown that heat may be transferred during solar flares by sharp fronted thermal wave pulses. Energy dissipation in the wave front arises from the firehose instability excitation. The effects of ionosonic turbulence on heat transport in a quiet solar wind are also investigated. A quasi-steady state, in which there is a balance between wave-particle interations and particle collisions is found. It is shown that the effect of wave-particle ‘collisions’ is to produce a significant decrease of the electron heat flow and electron temperature, and increase of the ion temperature relative to calculations which take into account particle particle collisions only.  相似文献   

13.
Using the spectral data of representative solar flares observed with the infrared detector system of the solar spectrograph at Purple Mountain Observatory, we study the spectroscopic characteristics of solar flares in the Hα, the Ca i i 8?542 Å, and the He i 10?830 Å lines in different phases and various locations of flares and discuss their possible implications coupled with space observations. Our results show that in the initial phase of a flare the Hα line displays a red shift only with no wide wing. Large broadenings of the Hα line are observed a few minutes after the flare onset within small regions of 3?–?5′′ in both disk and limb flares with and without nonthermal processes. Far wings similar to those of damping broadening appear not only in the Hα line but in the He i 10?830 Å line as well in flares with nonthermal processes. Sometimes we even detect weak far-wing emission in the Ca i i 8?542 Å line in disk flares. Such large broadenings are observed in both the footpoints and the flare loop-top regions and possibly result from strong turbulence and/or macroscopic motions. Therefore, the so-called nonthermal wing of the Hα line profile is not a sufficient condition to distinguish whether nonthermal electrons are accelerated or not in a flare. The Ca i i 8?542 Å line shows lower intensity in the loop-top regions and higher intensity in the parts close to the solar surface. Emissions larger than nearby continuum in the He i 10?830 Å line are detected only in small regions with strong X-ray emissions and avoid sunspot umbrae.  相似文献   

14.
Large solar telescopes built at places with a quite excellent seeing, equipped with a sophisticated optics and control system are too expensive and unique to be used currently in hunting of sudden and short‐lasting activity events, e.g. flares and eruptive prominences. For a systematic observation of selected kinds of active phenomena it is still necessary to use smaller or medium‐sized telescopes equipped with a special setup of devices. Detection of linear polarization in the Hα line emitted in a flare seems to be just a right task and delicate matter for such a systematic observation. This kind of polarization is supposed to be generated by particle beams accelerated in thke corona and directed towards denser chromospheric layers where the particle beams deposit their kinetic energy. As the accelerated particle beams possess a preferred direction of velocity they can produce a linearly polarized light. However, the occurrence of the accelerated particle beams and the related linear polarization in the Hα line may have a tendency to appear: 1) at the early beginning of a flare 2) in pulses lasting just a few seconds or even less. To measure the linear polarization in flares regularly we have built an additional branch in the Ondřejov multichannel flare spectrograph. In this paper we describe the optical system, the detectors, the method used for data recording and reduction and we also briefly discuss the first results.  相似文献   

15.
Large disturbances in the interplanetary medium were observed by several spacecraft during a period of enhanced solar activity in early February 1986. The locations of six solar flares and the spacecraft considered here encompassed more than 100° of heliolongitude. These flares during the minimum of cycle 21 set the stage for an extensive multi-spacecraft comparison performed with a two-dimensional, magnetohydrodynamic (MHD) numerical experiment. The plasma instruments on the European Space Agency (ESA)'s GIOTTO spacecraft, on its way to encounter Comet Halley in March 1986, made measurements of the solar wind for up to 8 hours per day during February. We compare solar wind measurements from the Johnstone Plasma Analyzer (JPA) experiment on GIOTTO with the MHD simulation of the interplanetary medium throughout these events. Using plasma data obtained by the IMP-8 satellite in addition, it appears that an extended period of high solar wind speed is required as well as the simulated flares to represent the interplanetary medium in this case. We also compare the plasma and magnetometer data from VEGA-1 with the MHD simulation. This comparison tends to support an interpretation that the major solar wind changes at both GIOTTO and VEGA-1 on 8 February, 1986 were due to a shock from a W05° solar flare on 6 February, 1986 (06:25 UT). The numerical experiment is considered, qualitatively, to resemble the observations at the former spacecraft, but it has less success at the latter one.  相似文献   

16.
Three-dimensional (3D) magnetic reconnection is taking place commonly in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. One of the proposed mechanisms for steady-state 3D magnetic reconnection is “torsional spine reconnection”. By using the magnetic and electric fields for “torsional spine reconnection”, we numerically investigate the features of test particle acceleration with input parameters for the solar corona. We show that efficient acceleration of a relativistic proton is possible near the null point where it can gain up to 100 MeV of kinetic energy within a few milliseconds. However, varying the injection position results in different scenarios for proton acceleration. A proton is most efficiently accelerated when it is injected at the point where the magnetic field lines change their curvature in the fan plane. Moreover, a proton injected far away from the null point cannot be accelerated and, even in some cases, it is trapped in the magnetic field. In addition, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.  相似文献   

17.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

18.
We investigate the particle acceleration in a magnetic trap with converging mirrors, which is a constituent part of the magnetic reconnection mechanism in solar flares. We take into account the effect of Coulomb collisions on the formation of the accelerated-electron distribution function. The solution of the kinetic equation shows that the Coulomb scattering of anisotropic accelerated electrons leads to their isotropization. As a result, the fraction of trapped particles increases and the acceleration efficiency significantly rises.  相似文献   

19.
This paper describes the solar wind plasma ejected by the proton flares of August/September, 1966, in McMath Region 8461. The discussion will serve a dual purpose. First it will help complete the record on the events of August/September 1966. Secondly we will discuss the helium enrichment of the interplanetary plasma associated with the flares. This is the fifth case reported in which major flares produce helium enriched interplanetary plasma. Relative helium abundances of greater than 15% are typical. These findings are interpreted in terms of a solar atmosphere that contains helium enriched regions.  相似文献   

20.
We use the Vlasov equations for ions and electrons to develop a theory of a double layer in which there are both free and trapped electrons and ions. We find the equations which replace the Langmuir condition and the Bohm conditions and by numerically solving the resultant differential equation we find for particular choices of distribution functions the potential distribution in the layer. We discuss the applicability of this theory to solar flares, and show that conditions in solar flares may be such that double layers can exist for which the free particles have a power-law energy distribution. These particles will be accelerated in a double layer and may in this way account for the production of high-energy particles during the impulsive phase of solar flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号