首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Dust grains expelled by radiation pressure of stars are charged to potentials in the range 30–40 V in Hi clouds. These grains may be responsible for the following phenomena which are otherwise hardly explicable. (1) A considerable fraction of electrons knocked-out by charged grains of high speeds have energies around 15 eV and produce singly ionized ions but not doubly ionized ones in accord with an ultraviolet observation of interstellar atoms and ions. (2) Transverse momentum transferred to grains by Coulomb scattering of ambient electrons and protons is greater than that by multiple scattering of cosmic ray protons, thus the former being more effective for the grain alignment than the latter. (3) At a shock front charge separation due to a large inertial mass of grains produces an electric field, thus accelerating charged particles and causing a drift of interstellar matter.  相似文献   

2.
There are several astrophysical situations where one needs to study the dynamics of magnetic flux in partially ionized turbulent plasmas. In a partially ionized plasma, the magnetic induction is subjected to the ambipolar diffusion and the Hall effect in addition to the usual resistive dissipation. In this paper, we initiate the study of the kinematic dynamo in a partially ionized turbulent plasma. The Hall effect arises from the treatment of the electrons and the ions as two separate fluids and the ambipolar diffusion due to the inclusion of neutrals as the third fluid. It is shown that these non-ideal effects modify the so-called α effect and the turbulent diffusion coefficient β in a rather substantial way. The Hall effect may enhance or quench the dynamo action altogether. The ambipolar diffusion brings in an α which depends on the mean magnetic field. The new correlations embodying the coupling of the charged fluids and the neutral fluid appear in a decisive manner. The turbulence is necessarily magnetohydrodynamic with new spatial and time-scales. The nature of the new correlations is demonstrated by taking the Alfvénic turbulence as an example.  相似文献   

3.
4.
5.
电离层从猜想到证实完全是无线电技术发展的结果。通过地面无线电探测和火箭、卫星的空间探测、证实了Chapman的理论。由于太阳紫外线,X射线辐射致使高空上层大气电离。电离层介质是电子、正负离子和中性粒子全体的混合物。它们构成了地磁场中磁离子介质。本文根据磁离子理论,研究了电离层中等离子体的频率特性,从而解释了D、E、F1和F2层的电波反射特性。最后计算了陕西天文台至云南天文台电离层波导的传播时延,获得了有意义的结果。  相似文献   

6.
H.M. Wiechen 《Icarus》2005,175(1):15-22
The remnant magnetization of chondrite type meteorite matter indicates the existence of 10−5-10−3 T magnetic fields in the early Solar System accretion disk. Taking into account parameter regimes being typical for this evolutionary stage of Sun and planets we consider the protosolar disk matter as partially ionized dusty plasma consisting of massive charged dust grains, neutral gas, electrons and ions. Results of systematic multifluid neutral gas-plasma-dust simulations show that shear flow driven collisional interactions yield a self-magnetization of the early Solar System matter which is able to explain the measured remnant magnetization of meteorite material.  相似文献   

7.
We present the 2-D, two fluid (ions + neutrals) numerical simulations that we are carrying out in order to study the ambipolar filamentation process, in which a magnetized, partially ionized plasma is stirred by turbulence in the ambipolar frequency range. The higher turbulent velocity of the neutrals in the most ionized regions gives rise to a non-linear force driving them out of these regions, and causes the ions and the magnetic flux to condense in the most ionized regions, resulting in a filamentary structure where initial ionization inhomogeneities are amplified. This mechanism might help to explain some features observed in magnetized and partially ionized astrophysical plasmas as the interstellar medium.  相似文献   

8.
We study the linear theory of the magnetized Rayleigh–Taylor instability in a system consisting of ions and neutrals. Both components are affected by a uniform vertical gravitational field. We consider ions and neutrals as two separate fluid systems that can exchange momentum through collisions. However, ions have a direct interaction with the magnetic field lines but neutrals are not affected by the field directly. The equations of our two-fluid model are linearized and by applying a set of proper boundary conditions, a general dispersion relation is derived for our two superposed fluids separated by a horizontal boundary. We found two unstable modes for a range of wavenumbers. It seems that one of the unstable modes corresponds to the ions and the other one is for the neutrals. Both modes are reduced with increasing particle collision rate and ionization fraction. We show that if the two-fluid nature is considered, the RT instability would not be suppressed and we also show that the growth time of the perturbations increases. As an example, we apply our analysis to the Local Clouds which seem to have arisen because of the RT instability. Assuming that the clouds are partially ionized, we find that the growth rate of these clouds increases in comparison to the fully ionized case.  相似文献   

9.
The stability of kinetic Alfven waves is discussed for a partially ionized plasma with a flux of ionizing electrons which balance the plasma particle losses. Accidental electromagnetic perturbations are shown to be unstable due to the energy change of ionizing electrons.  相似文献   

10.
We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In this case, the neutral component of the converging convective flows entrain electrons and ions in different ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate conditions. We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating (as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and their characteristic energies. We discuss the role of the return current when dense beams of accelerated particles are injected into the corona. The results obtained are considered in light of the currently available data on the corpuscular radiation from solar flares.  相似文献   

11.
The processes by which energetic electrons lose energy in a weakly ionized gas of carbon dioxide are discussed and a consistent set of electron impact cross-sections is compiled. Calculations of the excitations, ionizations and neutral particle heating produced by the absorption of electrons in carbon dioxide gas are carried out for fractional ionizations ranging from 10?2 to 10?6.  相似文献   

12.
Magnetic fields play an important role in astrophysics and they often dominate the behavior of magnetized media. We simulate the mechanism (Tagger et al., 1995) by which turbulence in a weakly ionized plasma, as it cascades to the ambipolar scale (where the neutrals are imperfectly coupled to the ions) leads to a filamentation of the magnetic flux tubes: the turbulent velocity of the neutrals is higher in the more ionized regions, because they are better coupled to the ions. This results in a non-linear ponderomotive (<v.∇ v>) force driving them out of the ionized regions, so that the initial ionization inhomogeneities are strongly amplified. This effect causes the ions and magnetic field to condense and separate from the neutrals, resulting in a filamentary structure. We present the first results of a 2-D, 2-fluid (ions and neutrals) simulation, where a magnetized, weakly ionized plasma is submitted to turbulence in the ambipolar frequency range. We discuss the efficiency of this mechanism, the filamentary structure it should produce, and its relevance to the astrophysical context. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 10?2 and the mean energy per neutral hydrogen atom pair is calculated.  相似文献   

14.
The aim of the present paper is to explore the mechanism of fast Sweet–Parker’s magnetic reconnection with the Cowling’s conductivity. Cowling derived the resistivity of plasma with three components: electrons, ions and neutral particles in magnetic field theoretically after Spitzer. The resistivity is much larger than the Spitzer’s. According to the idea of partially ionized plasmas ejected into the corona as the trigger of flares, we adopt Cowling’s Conductivity to Sweet–Parker’s reconnection model in this paper. The result shows that the reconnection rate can be improved a lot in solar corona and approaches the timescale of solar flare in the absence of anomalous resistivity.  相似文献   

15.
A one-dimensional model is being considered where a fully ionized plasma is separated from a neutral gas by a homogeneous magnetic field directed along the plasma boundary. The plasma and the neutral gas consist of two different types of ions and neutral particles. In a stationary state the outflux of plasma by diffusion across the magnetic field is compensated by an influx of neutrals which are ionized in a partially ionized boundary region. It is found that the ratio between the ion densities in the fully ionized region will in general differ from the density ratio of the two types of neutrals being present in the gas region. This provides a separation mechanism with applications both to cosmical and laboratory plasmas, such as in the following cases:
  1. The abundance anomalies in magnetic variable stars and in the solar wind.
  2. Separation processes of non-identical ions and neutral atoms in gas blanket systems.
  相似文献   

16.
It is shown that even very slightly ionized clouds of matter and anti-matter can interpenetrate only a little on collision. Initial interpenetration produces fast electrons and positrons from annihilation. These, in turn, produce strong magneto-hydrodynamic shocks which give the small ionized component enough energy to ionize the neutral fraction and produce a Leidenfrost layer in about ten years after which interpenetration stops.  相似文献   

17.
A body moving in an ionized atmosphere acquires an electric charge through the processes of accretion of charged particles and emission of electrons by high energy photons. The moving charged body may then interact with the charged particles of the atmosphere and any pervading magnetic field to excite plasma waves. Of particular interest is the situation in which the body collects an ionized cloud in front of it. The motion of this ionized cloud in the atmosphere induces an electrostatic instability and causes a column of ionized gas to move ahead of the body. The electrostatic instability is conducive to the excitation of electrostatic oscillations which if already present are further enhanced. A magnetic field along the direction of motion assists in the formation of the ionized cloud. If the pervading magnetic field is of suitable weak strength, it may excite extraordinary electromagnetic waves. A pervading transverse magnetic field of suitable strength may cause the excitation of magnetohydrodynamic waves.  相似文献   

18.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

19.
The Suprathermal Plasma Analysers on GEOS-2 are able to make differential energy measurements of plasma particles down to sub-eV energies because the entire sensor package can be biased relative to the spacecraft. When the package is biased negatively with respect to space potential, low energy positive ions are sucked in and are more easily detected against the background. Large fluxes of ions with temperatures of the order of 1 eV or less were consistently detected at space potential when the spacecraft was in the magnetosheath though not when it was in the nearby magnetosphere. This apparent geophysical correlation, suggesting that the ions were part of the magnetosheath ion population, was contradicted by the fact that the ions showed no signs of the large drift velocity associated with the electric field in the magnetosheath. We conclude, after further investigation, that the observed ions were probably sputtered as neutrals from the spacecraft surface by the impact of solar wind ions and subsequently ionized by sunlight or electron impact. The effect of sputtering by solar wind ions has not been previously observed, although it could have consequences for the long-term stability of spacecraft surfaces.  相似文献   

20.
Simultaneous measurements of keV ions and electrons with the ESRO 1A satellite have shown the following ion characteristics among others. Ions of about 6 keV energy are strongly field-aligned on the flanks of the inverted V events (mainly through the disappearance of the ion flux near 90° pitch angle). Field-aligned electron fluxes are often found in the same regions of the inverted V events where the ions are field-aligned. At the centre of inverted V events isotropization occurs (except in some small events). The 1 keV ion flux at large pitch angles (80°) is generally not reduced very much when the 6 keV, 80° ion flux shows strongly decreased values. The ratio of the 1 to 6 keV ion flux has a maximum near the centre of an inverted V event where the electron spectrum is hardest and the 6 keV ions are isotropic (or nearly isotropic).The observations are interpreted in terms of a model with two oppositely directed field-aligned electrostatic potential drops: one upper accelerating electrons downward and one lower, produced by the electron influx, which accelerates ions downward. Ion scattering in turbulent wave fields is proposed to be responsible for the observation that the 1 keV ion flux at large pitch angles does not decrease strongly where the 6 keV ion flux does and as an explanation of the isotropization at the centre of the event. The source problem for the ions is eliminated by the precipitating electrons ionizing continuously the thin neutral atmosphere even at altitudes of a few thousand kilometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号