首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. A set of recurrence relations similar to that of Kennett suitable for SH -wave generation in an ( n + l)-layered half-space is presented. The recurrence relations contain no growing terms, thus providing a stable and efficient algorithm for computing complete SH synthetic seismograms. The complete expansion of these recurrence relations gives the explicit form of the transfer function for SH -waves. The transfer function for a point source in layer s of the stratification is a series of 2 n terms in the denominator and a series of 2 n−s +1 terms in the numerator. The result of Wang from ray summation is shown to be a special case of our general result. Numerical comparison of the algorithm of this paper with the propagator matrix method is also made.  相似文献   

2.
We present two equivalent algorithms for iterative linearized waveform inversion for 3-D Earth structure with respect to an arbitrary 3-D starting model; one is a matrix formulation, and the second is a wavefield formulation. Both algorithms require the computation of accurate synthetic seismograms, but neither requires that any particular method be used to compute the synthetics. The matrix formulation is equivalent to our previously published algorithm (Hara, Tsuboi & Geller 1991), but requires less than 10 per cent of the CPU time of the previous algorithm. The wavefield algorithm is equivalent to that of Tarantola (1986) and Mora (1987), but appears to be substantially more efficient.  相似文献   

3.
A seismic re fraction/wide-angle reflection profile is analysed for the presence of correlated events ('phases'). The correlation problem is formulated in terms of temporally, spatially and frequency-local complex covariances. For robustness, the method concentrates on phase rather than amplitude information. This allows a computationally efficient algorithm that can make allowance for signal correlation length and can model curved wavefronts. A statistical test based on residual phase misfit across the analysed subarray is used to assess the probability that a detected event represents a real correlated signal.
With our chosen analysis parameters and confidence level (over 99.9 per cent). 1222 events were detected in the data. Using simple techniques based on 1-D earth models, detected events are associated with a small number of particular wave types. In this way, we have succeeded in classifying almost 95 per cent of the detected events. Those that remain describe those components of the data that are inconsistent with our simple ray paths in the 1-D assumption and with our prescribed tolerance. These include reverberations, near-surface guided waves and reflected waves from strongly laterally inhomogeneous structures. According to our modelling, about 25 per cent of the detected events are consistent with simple P -wave reflected energy, and these are to a very large extent (over 85 per cent) distinct from all the other wave-type models we have used. A direct mapping of the detected events into the offset-depth domain reveals dear internal and external consistencies among the detections for the various wave types. Estimated earth structure is consistent with models from previous analyses based on much larger data sets.
We have thus succeeded in extracting correlated events from the data and decomposing these, approximately but meaningfully, into distinct classes (ray paths)  相似文献   

4.
Summary. We develop a méthod of reconstructing the elastic paraméters as functions of depth, for a horizontally stratified, isotropic elastic half-space. Unlike previous schemes, which have been able to retrieve the shear wave speed and density from SH seismograms slant stacked at two angles, our méthod makes use of P - SV data at a single stacking paraméter to obtain all three elastic constants. The data required are the elements of the full reflection matrix at the surface, corresponding to measurements of two separate components of the response to two independent sources, one explosive, the other generating shear waves.
In developing this inverse scheme fundamental differences emerge between the acoustic or SH problem, and the coupled P - SV case, the most important being in the nature of the interfacial scattering matrix. We show that it is not possible to make use of the downward reflection data for an interface to determine directly the remaining reflection and transmission coefficients, but that the scattering data may be completed by applying a simple iterative procedure at each interface.
We show the result of applying our inverse scheme to seismograms generated for a six-layered model, including a low-velocity layer. We are able to reconstruct both wave speeds and the density as functions of depth, all quantities being in close agreement with the original model.  相似文献   

5.
Summary. The shear-wave velocity distribution in a spherically averaged Earth is estimated statistically from previously published short-period S travel-time measurements (Uhrhammer). An algorithm is defined for integral inversion techniques which allows estimation of the variance of the velocity distribution from the uncertainties in the S slowness model. Comparisons are made between the resulting S -velocity solution and other solutions in common use. There are significant differences (at the 95 per cent confidence level) between the 5-velocity model determined here and the Jeffreys-Bullen model over the depth ranges of 150–550 km and 2100–2350 km. The 95 per cent confidence level in the present velocity distribution ranges from ± 0.025 km/s at 625 km to ±0.32km/s at 2766 km and averages about ±0.063 or ±1 percent.
Correlations between azimuthally dependent source and station adjustments (which were previously determined (Uhrhammer)) indicate widespread lateral inhomogeneities (up to 3.4 per cent) to depths of approximately 700 km. Up to three-quarters of the source adjustments are due to lateral velocity variations in the source regions. Station adjustments for differential 5 minus P times are significantly correlated with elevation and crustal age, but not with station instrumental magnification.  相似文献   

6.
Summary. Approximate methods are applied to problems of internal reflection in a continuous medium when the changes of properties in a wave-length are small. It is found that total internal reflection gives a phase shift of 1/2π in harmonic waves and hence a blunting of a pulse and the introduction of some oscillation.
In the absence of a free surface P and SV movements are substantially independent even if total reflection takes place. SH and SV can travel in an internal layer of low velocity, but will not produce much motion at a free surface unless the total variation of properties is small. P waves in such a channel will suffer attenuation by conversion to SV at the free surface.  相似文献   

7.
Summary. A method of synthetic seismogram computation for teleseismic SV -waves is developed in order to treat quantitatively SV -waves in problems of body wave source inversion and source—receiver structure studies. The method employs WKBJ theory for a generalized ray in a vertically inhomogeneous half-space and the propagator matrix technique for waves in near-surface homogeneous layers. Wavenumber integration is done along the real axis of the wavenumber plane and anelasticity is included by using complex velocity in all regions of the earth model. The near-surface source structure is taken into account in the computation for the case of the shallow source by allowing a point source to be located in the homogeneous layers. Source and receiver area structures are also allowed to differ. A general moment tensor point source is considered.  相似文献   

8.
This paper presents a geometrically based algorithm for computing synthetic seismograms for energy transmitted through a 3-D velocity distribution. 3-D ray tracing is performed to compute the traveltimes and geometrical spreading (amplitude). The formulations of both kinematic and dynamic ray-tracing systems are presented. The two-point ray-tracing problem is solved by systematically updating the initial conditions and adjusting the ray direction until the ray intersects the specified endpoint. The amount of adjustment required depends on the derivatives of the position with respect to the given starting angles between consecutive rays. The algorithm uses derivatives to define the steepest-descent direction and to update the initial directions. The convergence rate depends on the complexity of the model.
Test seismograms compare favourably with those from a 2-D asymptotic ray theory algorithm and a 3-D Gaussian-beam algorithm. The algorithm is flexible in modelling arbitrary source and recorder geometries for various smoothly varying 3-D velocity distributions. The algorithm is further tested by simulating surface-to-tunnel vibroseis field data. Shear waves as well as compressional waves may be approximately included. Application of the algorithm to a data set from the Rainier Mesa of the Nevada Test Site produced a good fit to the transmitted (first arrival) traveltimes and amplitudes, with approximately 15 per cent variation in the local 3-D velocity.  相似文献   

9.
Summary. Shear-wave travel times in a spherically averaged earth are estimated using 'differential' S minus P ( S – P ) travel-time measurements and detailed statistical procedures. Fourteen earthquakes and 48 stations are specially selected, yielding 302 S - P times for 6° < Δ < 111°. Analysis of variance techniques are used to estimate simultaneously azimuthally varying source and station adjustments while constructing an S – P travel-time model. A method of weighting the equations of condition based on the distribution of stations and epicentres is developed to reduce the effects of systematic errors due to non-random sampling of the Earth. The resulting S - P travel times are added to the 1939 Jeffreys–Bullen and the 1968 Herrin P travel times as a function of distance to obtain shear-wave travel-time models. Confidence intervals for the models are estimated from the variance of the observed S – P travel times.
The standard error for a single observed S – P travel time (6° < Δ < 111°) is 2.1 s and the residual distribution is not significantly different from a normal distribution at the 95 per cent confidence level. For 30° < Δ < 80° the mean S travel time is 1.3 s later than the corresponding mean for Jeffreys–Bullen tables, which is significant at the 95 per cent confidence level.  相似文献   

10.
The characteristics of a reflected spherical wave at a free surface are investigated by numerical methods; in particular, the polarization angles and amplitude coefficients of a reflected spherical wave are studied. The classical case of the reflection of a plane P wave from a free surface is revisited in order to establish our terminology, and the classical results are recast in a way which is more suited for the study undertaken. The polarization angle of a plane P wave, for a given angle of incidence, is shown to be 90° minus twice the angle of reflection of the reflected S wave. For a Poisson's ratio less than 1/3, there is a non-normal incident angle for which both amplification coefficients are 2 precisely; for this incident angle the direction of the particle motion at the free surface is also the direction of the incident wave. For a wave emanating from a spherical source, the polarization angle, for all angles of incidence, is always less than, or equal to, the polarization angle of a plane P wave. The vector amplification coefficient of a spherical wave, for all angles of incidence, is always greater than the vector amplification coefficient of a plane P wave. As expected, the results for a spherical wave approach the results for a plane P wave in the far field. Furthermore, there was a good agreement between the theoretical modelling and the numerical modelling using the dynamic finite element method (DFEM).  相似文献   

11.
P-wave velocity anisotropy in crystalline rocks   总被引:1,自引:0,他引:1  
Summary. Compressional wave velocities and anisotropy coefficients determined at high hydrostatic pressures are compiled from the data published for the main types of crystalline rocks. The crack-free elastic anisotropy of igneous crustal rocks is generally very low, between 1 and 3 per cent on average. The anisotropy of metamorphic rocks is higher (up to 22 per cent), but very variable. The average anisotropy coefficients in schists and amphibolites are about 10 per cent, in gneisses between 3 and 7 per cent, and in granulites less than 3 per cent. The average anisotropy of olivine ultramafites is between 7 and 12 per cent, whereas in pyroxenites and eclogites it is usually less than 4 per cent. A comparison of ranges of average velocities and average anisotropies for the individual rock groups suggests that, whereas in the crust the lateral velocity variations are mainly due to compositional changes, in the olivine of the uppermost mantle the velocity variations due to anisotropic structures could be of the same magnitude as the variations due to inhomogeneities.  相似文献   

12.
To quantify the seismic properties of lower crustal rocks and to better constrain the origin of the lower crustal seismic reflectivity, we determined the complete 3-D seismic properties of a lower crustal section. Eight representative samples of the main lithologic and structural units outcropping in the Val Sesia (Ivrea zone) were studied in detail. The seismic velocities were calculated using the single crystal stiffness coefficients and the lattice preferred orientation (LPO) of each mineral in all samples. The 21 stiffness coefficients characterizing the elastic behaviour of each rock are determined. Mafic and ultramafic rocks such as pyroxenite and pyroxene-bearing gabbros display complex shear wave properties. These rocks are weakly birefringent (maximum 0.1 kms−1) and it is difficult to find consistent relationships between the seismic properties and the rock structure. On the other hand, seismic properties of deformed felsic rocks are essentially controlled by mica. They display strong S -wave birefringence (0.3 km s−1) and relatively high V p anisotropy (7.6 per cent). Amphibole also strongly influences the rock birefringence patterns. For both kind of rocks, the foliation is highly birefringent and the fast polarized shear wave is systematically oriented parallel to the foliation. We show that the number of mineral phases in the rock strongly controls the anisotropy. The seismic anisotropy has a complex role in the P -wave reflectivity. Compared to the isotropic case, anisotropy enhances the reflection coefficient for about 60 per cent of the possible lithological interfaces. For 40 per cent of the interfaces, the reflection coefficient is much lower when one considers the medium as anisotropic.  相似文献   

13.
Summary. The upper boundary of the descending oceanic plate is located by using PS -waves (converted from P to S at the boundary) in the Tohoku District, the north-eastern part of Honshu, Japan. the observed PS-P time data are well explained by a two-layered oceanic plate model composed of a thin low-velocity upper layer whose thickness is less than 10 km and a thick high-velocity lower layer; the upper and lower layers respectively have 6 per cent lower and 6 per cent higher velocity than the overriding mantle. the estimated location of the upper boundary is just above the upper seismic plane of the double-planed deep seismic zone. This result indicates that events in the upper seismic plane, at least in the depth range from 60 to 150 km, occur within the thin low-velocity layer on the surface of the oceanic plate.  相似文献   

14.
Seismic waves in a stratified half space   总被引:5,自引:0,他引:5  
Summary. For a buried source in a stratified elastic half space, the surface displacements are calculated by numerical integration of the Fourier–Bessel transform of the response. In the transform space this response is conveniently represented in terms of the reflection and transmission properties of the half space. For a layered medium this procedure avoids all problems associated with growing exponential terms in the evanescent regime. A slightly attenuative medium is assumed, so that the surface wave poles are shifted off the real slowness axis and thus a contour of integration along this axis may be employed. A general point source is represented by an arbitrary moment tensor.
The procedure is illustrated by calculations of three component seismograms including all P , SV and SH contributions for body and surface waves at moderate ranges. For local earthquakes we illustrate the striking effect of focal depth and also show the effect of sedimentary cover on strong ground motion.  相似文献   

15.
This study aims to map forest cover in Peninsular Malaysia using satellite images as deforestation is of concern in the recent decades, and is an important environmental issue for the future too. The Carnegie Landsat Analysis System‐Lite (CLASlite) program was used in this study to detect forest cover in Peninsular Malaysia using Landsat satellite data. The results of the study show that CLASlite algorithm misclassified some oil palm, rubber and urban areas as forest vegetation. A reliable forest cover map was produced by first combining Landsat and ALOS PALSAR images to identify oil palm, rubber and urban areas, and then subsequently removing them. The HH and HV polarization data of ALOS PALSAR (threshold method) could detect oil palm plantations with 85.26 per cent of overall accuracy. For urban area detection, Enhance Build up Index (EBBI) using spectral bands from Landsat provided higher overall accuracy of 94 per cent. These methods produced a forest cover reading of 5 914 421 ha with an overall classification accuracy of 94.5 per cent. The forest cover (including rubber areas) detected in this study is 0.38 per cent higher than the percentage of 2010 forest cover detected by the Forestry Department of Peninsular Malaysia. The technique described in this paper presents an alternative and viable approach for updating forest cover maps in Malaysia.  相似文献   

16.
Summary. A conducting slab of finite thickness divided into three segments of different conductivities and overlying a perfect conductor is proposed as a suitable two-dimensional 'control' model for testing the accuracy of the various numerical modelling programs that are available for calculating the fields induced in the Earth by an external, time-varying magnetic source. An analytic solution is obtained for this control model for the case of the magnetic field everywhere parallel to the conductivity boundaries ( B -polarization). Values of the field given by this solution for a particular set of model parameters are calculated at selected points on the surface and on a horizontal plane inside the conductor, and are tabulated to three figure accuracy for reference. They are used to check the accuracy of the results given by the finite difference program of Brewitt-Taylor & Weaver and the finite element program of Kisak & Silvester for the same model. Improved formulae for calculating the derived electric field components in B -polarization are first developed for incorporation in the finite difference program, and these give surface electric fields within 1 per cent of the analytic values, while all three field components inside the conductor are calculated to better than 96 per cent accuracy by the finite difference program. The results given by the finite element program are not quite so satisfactory. Errors somewhat greater than 10 per cent are present and although the program requires much less disk space it takes rather more CPU time to complete the calculations.  相似文献   

17.
We investigate large-amplitude phases arriving in the P -wave coda of broad-band seismograms from teleseisms recorded by the Gräfenberg array, the German Regional Seismic Network and the Global Seismic Network. The data set consists of all events m b≤ 5.6 from the Aleutian arc between 1977 and 1992. Earthquakes with large-amplitude coda waves correlate with the presence of oceanic crust in the source region. The amplitudes sometimes approach those of the P wave, much larger than predicted by theory. Modelling indicates that phases in the P -wave coda cannot be P -wave multiples beneath the source and receiver, or underside reflections, which precede PP , from upper-mantle discontinuities. Among the events, seismograms are very similar, where the arrival times of the unusual phases agree approximately with the predicted times of S -to- P conversions from the upper-mantle discontinuities under the source. Because the large-amplitude phases in the P -wave coda have little, if any, dependence on event depth and have predominantly an SV -wave radiation pattern towards the receiver, we suggest that they originate as SV and/or Rayleigh waves and are enhanced by lateral heterogeneity and multipathing from the subducting Aleutian slab.  相似文献   

18.
Shear-coupled PL     
Summary. Observed teleseismic shear-coupled PL -waves ( SPL ) display a variety of waveforms depending on factors such as source depth, source type and velocity structure. Using a WKBJ spectral method for SV -wave propagation, synthetic seismograms of SPL are produced to examine the factors important in SV and SPL excitation. Results show that SPL is preferentially excited by shallow sources compared to deep sources. This is due to large source area reverberations which consequently leak as SV -waves into the mantle. Interaction at the receiver area then sets up the classic prograde elliptical motion by which SPL can be identified. This is in accordance with the teleseismic observations and indicates that most previous models for the propagation of SPL were not appropriate for shallow source since emphasis was placed on wave interactions occurring only near the receiver.  相似文献   

19.
Polarization anomaly of Love waves caused by lateral heterogeneity   总被引:1,自引:0,他引:1  
We calculate surface waves propagating in a laterally heterogeneous structure beneath the Kuril trench, where significant Love-wave polarization anomalies, called quasi-Love waves, are generated. Since 3-D wave propagation in the two-dimensionally heterogeneous structure can be assumed, we apply the 2.5-D finite difference method to the surface-wave calculations. The calculations show that a velocity contrast of 7 per cent at depths of less than 210 km beneath the Kuril trench cannot generate quasi-Love waves, and that an unlikely contrast of 20 per cent is required to generate clear quasi-Love waves. The possible cause of the quasi-Love waves inferred from previous studies on coupled free oscillations is a lateral variation in azimuthal anisotropy. The lateral variation in azimuthal anisotropy beneath the Kuril trench suggests a change in the mantle flow induced by the subducting slab.  相似文献   

20.
The anisotropy of heterogeneity scale lengths in the lower mantle is investigated by modelling its effect on the high-frequency precursors of PKIKP scattered by the heterogeneities. Although models having either an isotropic or an anisotropic distribution of scale lengths can fit the observed coda shapes of short-period precursors, the frequency content of broad-band PKIKP precursors favours a dominantly isotropic distribution of scale lengths. Precursor coda shapes are consistent with 1 per cent fluctuations in P velocity in the wavenumber band 0.05–0.5  km−1 extending to 1000  km above the core–mantle boundary, and with a D" region open to circulation throughout the lower mantle. The level of excitation of PKIKP precursors observed in the frequency band 0.02–2  Hz requires a power spectrum of heterogeneity that is nearly white or slowly increasing with wavenumber. Anisotropy of scale lengths may exist in a D" layer having larger horizontal than vertical scale lengths and produce little or no detectable effects on PKIKP precursors for P -velocity perturbations as high as 3 per cent when averaged over a vertical scale of several kilometres, and much higher when averaged over scales of hundreds of metres or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号