首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建筑场地地震液化危害评价及地基处理   总被引:5,自引:2,他引:3  
本文分析了地基失稳,计算震陷值及差异震陷等地基失效形式和液化土层的隔震作用,研究了液化指数、地基失效、液化土层隔震与多层房屋震害的关系,根据液化土的双重作用原理划分了液化危害等级,并提出了建筑场地地震液化危害评价方法和按小震不坏,中震可修,大震不倒的抗液化处理原则。  相似文献   

2.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   

3.
Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate(lime-mud) intercalated with cohesive soil,calcites with particle sizes diameters of ≤ 5 μm,10–15 μm and 23–30 μm as well as cohesive soil were sunk alternatively in water of three boxes to build three test models,each of which has a specific size of calcite. Pore water pressure gauges were buried in lime-mud layers at different depths in each model,and connected with a computer system to collect pore water pressures. By means of soil tests,physical property parameters and plasticity indices(Ip) were obtained for various grain-sized saturated lime-muds. The lime-muds with Ip ranging from 6.3 to 8.5(lower than 10) are similar to liquid saturated silt in the physical nature,indicating that saturated silt can be liquefied once induced by a strong earthquake. One model cart was pushed quickly along the length direction of the model so that its rigid wheels collided violently with the stone stair,thus generating an artificial earthquake with seismic wave magnitude greater than VI degree. When unidirectional cyclic seismic load of horizontal compression-tension-shear was imposed on the soil layers in the model,enough great pore water pressure has been accumulated within pores of lime-mud,resulting in liquefaction of lime-mud layers. Meanwhile,micro-fractures formed in each soil layer provided channels for liquefaction dewatering,resulting in formation of macroscopic liquefaction deformation,such as liquefied lime-mud volcanoes,liquefied diapir structures,vein-like liquefied structures and liquefied curls,etc. Splendid liquefied lime-mud eruption lasted for two to three hours,which is similar to the sand volcano eruption induced by strong earthquake. However,under the same artificial seismic conditions,development of macroscopic liquefied structures in three experimental models varied in shape,depth and quantity,indicating that excess pore water pressure ratios at initial liquefaction stage and complete liquefaction varied with depth. With size increasing of calcite particle in lime-mud,liquefied depth and deformation extent increase accordingly. The simulation test verifies for the first time that strong earthquakes may cause violent liquefaction of saturated lime-mud composed of micron-size calcite particles,uncovering the puzzled issue whether seafloor lime-mud can be liquefied under strong earthquake. This study not only provides the latest simulation data for explaining the earthquake-induced liquefied deformations of saturated lime-mud and seismic sedimentary events,but also is of great significance for analysis of foundation stability in marine engineering built on the soft calcium carbonate layers in neritic environment.  相似文献   

4.
强震中场地砂土液化产生的土层侧移对地面建筑结构和地下生命线工程造成了严重的破坏。可以预见,微倾斜液化场地的土层侧移也将对地铁地下结构的地震安全造成严重的威胁。鉴于此,开展了微倾斜(倾角为6o)可液化场地中两层三跨地铁地下车站结构与区间隧道连接部位地震反应的大型振动台模型试验研究。结果表明:微倾斜可液化场地中地铁车站结构两侧地基出现了明显的非对称液化分布特征,坡体下方水平土层比上方水平土层更易液化;因坡体内土体液化沿坡向下流滑引起了下方水平土层发生了明显的地面抬升,总体上坡体段内的地面侧移量最大,下方水平土层地面侧移量次之,坡体上方水平土层地面侧移量最小。同时,在试验过程中也发现,隧道和车站结构之间发生了明显的差异上浮,可能会造成连接部位附近结构的应力集中或加重该部位的地震破坏。  相似文献   

5.
将壁板桩桩身水平位移用有限级数函数表示,地基土体的荷载位移关系用Mindlin点对点的位移解表示,同时考虑桩前水平土阻抗力和桩侧水平摩阻力沿桩周分布的不均匀性,采用双重高斯数值积分法将基于变分原理建立的壁板桩群桩体系的总势能展开为简单的矩阵形式方程,并根据最小势能原理得到水平受荷壁板桩群桩荷载位移关系的显式解答。与三维有限元方法计算结果的对比验证了所提出解答的合理性。  相似文献   

6.
浅层顶管施工引起的土体移动   总被引:5,自引:2,他引:3  
顶管施工引起包括地面沉降和土的轴向移动在内的土的运动。 土的这些运动可能导致邻近构筑物和管线的损坏。 理论分析和现场实测都显示, 在类似于上海等地的软土地层中顶管施工, 顶管周围土的运动问题是三维的。 基于半解析数值方法的基本原理, 将轴向离散而在径向和环向选取位移函数, 构造了解析解函数。 给出了包括位移函数、刚度矩阵和荷载矩阵在内的理论分析过程, 从而建立了半解析单元法。 利用半解析单元法将顶管施工中三维土运动问题转化成一维数值计算 。 利用所建立的半解析单元法, 就软土地层中顶管工程实例计算了施工所引起的土体位移。 结果表明, 半解析元法用于计算顶管施工中顶管周围土的移动, 可以得到较为满意的结果。 由于计算所需要的单元数减少, 处理该问题所需要的时间也明显减少。 根据分析与计算结果还得到了一些有价值的结论。  相似文献   

7.
A simplified analysis method has been developed to estimate the vertical movement and load distribution of pile raft foundations subjected to ground movements induced by tunneling based on a two‐stage method. In this method, the Loganathan–Polous analytical solution is used to estimate the free soil movement induced by tunneling in the first stage. In the second stage, composing the soil movement to the pile, the governing equilibrium equations of piles are solved by the finite difference method. The interactions between structural members (such as pile–soil, pile–raft, raft–soil, and pile–pile) are modeled based on the elastic theory method of a layered half‐space. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups, and pile rafts subjected to ground movements induced by tunneling. Good agreements between these solutions are demonstrated. The method is also used for a parametric study to develop a better understanding of the behavior of pile rafts influenced by tunneling operation in layered soil foundations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Artificial ground freezing (AGF) is a commonly used technique in geotechnical engineering for ground improvement such as ground water control and temporary excavation support during tunnel construction in soft soils. The main potential problem connected with this technique is that it may produce heave and settlement at the ground surface, which may cause damage to the surface infrastructure. Additionally, the freezing process and the energy needed to obtain a stable frozen ground may be significantly influenced by seepage flow. Evidently, safe design and execution of AGF require a reliable prediction of the coupled thermo‐hydro‐mechanical behavior of freezing soils. With the theory of poromechanics, a three‐phase finite element soil model is proposed, considering solid particles, liquid water, and crystal ice as separate phases and mixture temperature, liquid pressure, and solid displacement as the primary field variables. In addition to the volume expansion of water transforming into ice, the contribution of the micro‐cryo‐suction mechanism to the frost heave phenomenon is described in the model using the theory of premelting dynamics. Through fundamental physical laws and corresponding state relations, the model captures various couplings among the phase transition, the liquid transport within the pore space, and the accompanying mechanical deformation. The verification and validation of the model are accomplished by means of selected analyses. An application example is related to AGF during tunnel excavation, investigating the influence of seepage flow on the freezing process and the time required to establish a closed supporting frozen arch. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
液化地基侧向流动引起的桩基础破坏分析   总被引:1,自引:1,他引:0  
王睿  张建民  张嘎 《岩土力学》2011,32(Z1):501-0506
20世纪60年代以来,流动地基中的桩基础的震害现象和抗震设计受到了工程师和研究者的广泛关注。对侧向流动地基中桩基础的一些典型震害现象和其可能震害原因的归纳和分析,显示目前研究仍不能完全解释侧向流动地基中桩基础的震害现象。选取新泻地震中昭和大桥桩基础破坏案例采用p-y方法进行计算,分析地基侧向流动引起的桩基础破坏的影响因素。计算结果显示,合理地描述液化砂土的p-y曲线模型在侧向流动地基桩基础分析中起到关键作用。对于侧向流动地基中桩基础的震害机制的进一步理解和抗震设计,有赖于更为合理和有效地液化砂土中的p-y模型的发展。  相似文献   

10.
孙锐  赵倩玉  袁晓铭 《岩土力学》2014,35(Z1):299-305
通过对2011年新西兰发生的6.3级地震中获取的硬土场地、软土场地和液化场地强震记录实测资料进行分析,研究包括3种类型场地的地震动特征及其相互关系。分析的强震记录为震中距小于50 km,且峰值大于0.05g的23个场地上的加速度记录,其中含3个硬场地、11个软场地和9个液化场地。3种类型场地上的放大系数谱对比分析表明,硬土场地、软土场地和液化场地上的地震动特征具有明显区别,三者层次清晰,差别显著,从地震动表现上液化场地已构成一个与常规场地并列的独立单元;液化场地减少地震动高频分量但同时对低频分量显著放大,与非液化场地相比,液化场地可使其上短周期结构反应减小一半,但同时可使其上长周期结构反应放大2.5~5.0倍;土层的液化对此次地震中克莱斯特彻奇市中心CTV大楼的破坏应有很大影响,大楼自振周期约为0.7 s,地震中土层液化使场地加速度反应谱卓越周期由0.1~0.3 s增到0.5~1.0 s,与大楼的自振周期趋于吻合,加重了大楼震害。以此为鉴,按现有规范中地震动的设计方法,如遇液化场地将对长周期结构给出明显危险的结果,因此从振动角度今后进行结构抗震设计时,可液化场地上的地震动应给予特殊考虑。  相似文献   

11.
The concurrent multiscale method, which couples the discrete element method (DEM) for predicting the local micro‐scale evolution of the soil particle skeleton with the finite element method (FEM) for estimating the remaining macro‐scale continuum deformation, is a versatile tool for modeling the failure process of soil masses. This paper presents the separate edge coupling method, which is degenerated from the generalized bridging domain method and is good at eliminating spurious reflections that are induced by coupling models of different scales, to capture the granular behavior in the domain of interest and to coarsen the mesh to save computational cost in the remaining domain. Cundall non‐viscous damping was used as numerical damping to dissipate the kinetic energy for simulating static failure problems. The proposed coupled DEM–FEM scheme was adopted to model the wave propagation in a 1D steel bar, a soil slope because of the effect of a shallow foundation and a plane‐strain cone penetration test (CPT). The numerical results show that the separate edge coupling method is effective when it is adopted for a problem with Cundall non‐viscous damping; it qualitatively reproduces the failure process of the soil masses and is consistent with the full micro‐scale discrete element model. Stress discontinuity is found in the coupling domain. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
On 25 December 1884, an earthquake of epicentral intensityI 0 = IX in the MSK scale caused great damage in a large area in the provinces of Granada and Málaga, in the south of Spain. The reports of the Spanish, Italian and French Commissions that studied the earthquake described ground phenomena in seven different sites which can be identified as soil liquefaction.By means of dynamic penetration tests carried out in the above sites, the corresponding soil profiles (based on SPT data and water table depth) were established, and the occurrence of liquefaction was proved in five out of seven of these sites. Also, the intensities at such locations and the magnitude of the earthquake were estimated.From the geotechnical data and the cyclic stress ratio induced by the earthquake, liquefaction conditions were confirmed in all the five sites which presumably liquefied. Then, possible values of the minimum ground surface accelerations necessary for the onset of liquefaction at each location were calculated. The results obtained were completed with data reported in six liquefaction case studies from Japan and the United States, from which design charts relating soil acceleration with normalized SPT values for different intensity levels were drawn.Finally, by using standard attenuation curves, the above data were translated into epicentral distances, and good agreement with the known epicentral area was found. As a result, a consistent approach for liquefaction hazard and source location problems has been developed. The proposed method combines in its formulation historical evidence and earthquake engineering techniques.  相似文献   

13.
秦世伟  莫泷  史蕙质 《岩土力学》2013,34(4):987-995
将地震液化场地土层分为非液化表层土、中部的液化土层和底部的基层,基于饱和多孔介质理论和Novak薄层法,研究轴向压力作用下液化黏弹性土层中端承桩的水平动力特性。利用Helmholtz分解和变量分离法,得到液化土层对桩水平振动的阻抗。利用矩阵传递法,在频率域得到轴力作用下液化土层中端承桩简谐振动的解析解和桩头复刚度的表达式,并进行参数研究,分析轴力、桩-土模量比、桩长径比、液-固耦合系数等对桩头动力刚度和阻尼的影响。结果表明,在轴力作用下,不同长径比、桩-土模量比、液-固耦合系数时的动力刚度绝对值均比无轴力作用时减小,但随频率的变化趋势相同;轴力对桩水平振动的动力阻抗影响显著,随着轴力的增加,桩的水平振动动力刚度因子的绝对值减小,若轴力继续增大,其绝对值趋近于0,桩发生失稳破坏;桩长径比和桩土模量比对桩的水平振动动力阻抗有显著的影响,而液-固耦合系数的影响较小。  相似文献   

14.
求水山隧道下穿机荷高速段新奥法施工有限元计算   总被引:5,自引:0,他引:5  
结合求水山隧道的暗挖法施工方案,对软土地区浅埋隧道下穿高速公路的施工过程进行了有限元模拟,以用于评价按该施工方案施工时对其上部高速公路的影响。由于该段隧道最小埋深仅4 m,且上部还有高速公路车辆荷载,因此,在设计时采用了新奥法结合管棚工法的方案。有限元建模使用平面应变单元,通过引入应力释放分析步和使用追踪单元等方法充分体现了新奥法的特点,并通过设置耦合和弹簧的方法实现了管棚工法的模拟,在计算中还考虑了开挖顺序和支护顺序的影响。研究结果表明:对于上部有荷载的浅埋暗挖隧道,控制衬砌的水平向变形能改善衬砌环的工作状态,因此,可显著减少开挖引起的隧道顶面沉降,新奥法结合管棚工法可较好地控制该类型隧道开挖引起的地表沉降变形。  相似文献   

15.
A computational method, incorporating the finite element model (FEM) into data assimilation using the particle filter, is presented for identifying elasto‐plastic material properties based on sequential measurements under the known changing traction boundary conditions to overcome some difficulties in identifying the parameters for elasto‐plastic problems from which the existing inverse analysis strategies have suffered. A soil–water coupled problem, which uses the elasto‐plastic constitutive model, is dealt with as the geotechnical application. Measured data on the settlement and the pore pressure are obtained from a synthetic FEM computation as the forward problem under the known parameters to be identified for both the element tests and the ground behavior during the embankment construction sequence. Parameter identification for elasto‐plastic problems, such as soil behavior, should be made by considering the measurements of deformation and/or pore pressure step by step from the initial stage of construction and throughout the deformation history under the changing traction boundary conditions because of the embankment or the excavation because the ground behavior is highly dependent on the loading history. Thus, it appears that sequential data assimilation techniques, such as the particle filter, are the preferable tools that can provide estimates of the state variables, that is, deformation, pore pressure, and unknown parameters, for the constitutive model in geotechnical practice. The present paper discusses the priority of the particle filter in its application to initial/boundary value problems for elasto‐plastic materials and demonstrates a couple of numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a coupling method between finite element and analytical layer‐elements is utilized to analyze the time‐dependent behavior of a plate of any shape and finite rigidity resting on layered saturated soils. Based on the integral transform techniques together with the aid of an order reduction method, an analytical layer‐element solution is derived from the governing equations for three‐dimensional Biot consolidation with respect to a Cartesian coordinate system and then extended to be the fundamental solution for the layered saturated soil under a point load. The Mindlin plate is modeled by eight‐noded isoparametric elements. The governing equations of the interaction between soil and plate in the Laplace‐Fourier transformed domain are deduced by referring to the coupling theory of FEM/BEM, and the final solution is obtained by applying numerical inversion. Numerical examples concerned with the time‐dependent response of a plate are performed to demonstrate the influence of soil and plate properties on the interaction process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The paper presents a mechanical model for non‐isothermal behaviour of unsaturated soils. The model is based on an incrementally non‐linear hypoplastic model for saturated clays and can therefore tackle the non‐linear behaviour of overconsolidated soils. A hypoplastic model for non‐isothermal behaviour of saturated soils was developed and combined with the existing hypoplastic model for unsaturated soils based on the effective stress principle. Features of the soil behaviour that are included into the model, and those that are not, are clearly distinguished. The number of model parameters is kept to a minimum, and they all have a clear physical interpretation, to facilitate the model usefulness for practical applications. The step‐by‐step procedure used for the parameter calibration is described. The model is finally evaluated using a comprehensive set of experimental data for the thermo‐mechanical behaviour of an unsaturated compacted silt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
雷国辉  詹金林  洪鑫 《岩土力学》2007,28(10):2071-2076
将壁板桩桩身竖向位移用有限级数函数表示,地基土体的荷载位移关系用Mindlin点对点的位移解表示,同时考虑壁板桩桩身剪应力沿其周边以及桩底法向应力沿桩底面分布的不均匀性,采用双重高斯数值积分法将基于变分原理建立的壁板桩群桩体系的总势能展开为简单的矩阵形式方程,并根据最小势能原理得到壁板桩群桩竖直荷载沉降关系的显式解答。与近似三维分析方法计算结果的对比验证了所提出解答的合理性,也展示了其计算速度更快,计算存储量要求更低的优点。  相似文献   

19.
杨骁  何光辉 《岩土力学》2012,33(7):2189-2195
将地震液化场地分为地表的上覆未液化土层、底部的未液化基层以及夹在两者之间的液化土层,基于桩-土相互作用的非线性Winkler模型,考虑桩弯曲的非线性弯矩-曲率本构关系和桩的几何非线性变形,建立了液化土层横向扩展下桩非线性大挠度变形的基本控制方程,并利用打靶法进行了数值求解。同时,给出了桩线弹性小变形情形下的解析解。通过与非线性有限元解和线弹性小变形解析解的比较,验证了文中打靶法的有效性和可靠性。用数值方法分析了液化土层横向扩展对桩力学性能的影响,结果表明:非线性桩-土相互作用和桩材料非线性效应强于桩的几何非线性效应,随着液化土层横向扩展位移的增加,几何非线性效应逐渐增大,此时,应采用完全非线性模型进行桩力学行为的分析。  相似文献   

20.
The increasing importance of performance-based earthquake engineering analysis points out the necessity to assess quantitatively the risk of liquefaction of embankment-type structures. In this extreme scenario of soil liquefaction, devastating consequences are observed, e.g., excessive settlements, lateral spreading and slope instability. The present work discusses the global dynamic response and interaction of an earth structure-foundation system, so as to determine quantitatively the collapse mechanism due to foundation’s soil liquefaction. A levee-foundation system is simulated, and the influence of characteristics of input ground motion, as well as of the position of liquefied layer on the liquefaction-induced failure, is evaluated. For the current levee model, its induced damage level (i.e., induced crest settlements) is strongly related to both liquefaction apparition and dissipation of excess pore water pressure on the foundation. The respective role of input ground motion characteristics is a key component for soil liquefaction apparition, as long duration of mainshock can lead to important nonlinearity and extended soil liquefaction. A circular collapse surface is generated inside the liquefied region and extends toward the crest in both sides of the levee. Even so, when the liquefied layer is situated in depth, no significant effect on the levee response is found. This research work provides a reference case study for seismic assessment of embankment-type structures subjected to earthquake and proposes a high-performance computational framework accessible to engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号