首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
黄正红  邓守春  李海波  于崇 《岩土力学》2018,39(Z1):267-274
采用自制的压–拉转换装置,配合RMT 150C岩石力学试验系统及数字散斑相关方法,对双边非对称裂纹类岩石平板试样进行直接拉伸试验,得到类岩石试样的拉应力–应变曲线、试样表面应变场演化过程和裂纹扩展模式。研究发现,类岩石试样直接拉伸的拉应力–应变曲线大致可以分为4个阶段:(1)近似线性阶段,预制裂纹基本不起作用,应力随应变增加较快,试样表面应变场的分布主要受试样内部的孔隙及颗粒的影响;(2)整体缓慢增加阶段,两预制裂纹和试样内部的孔隙及颗粒共同影响试样表面应变场的分布,整体上应力随应变呈增加趋势;(3)短暂峰值过渡阶段,试样中某个预制裂纹对试样表面应变场的分布起决定性作用;(4)破坏阶段,裂纹起裂位置在应变场相对集中区域,并扩展导致试样破坏。对于直接拉伸条件下的双边非对称裂纹平板试样,其中某条预制裂纹会率先扩展,先向远离前方裂纹的方向扩展,再向靠近前方裂纹的方向扩展,对采用数值模拟方法研究张拉应力状态下裂纹相互作用扩展规律具有重要意义。  相似文献   

2.
This paper presents a single‐domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the two‐dimensional anisotropic material. In this formulation, the displacement integral equation is collocated on the un‐cracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. A special crack‐tip element was introduced to capture exactly the crack‐tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors of an anisotropic material. This BEM program has been verified having a good accuracy with the previous researches. Furthermore, by analyzing the different anisotropic degree cracks in a finite plate, we found that the stress intensity factors of crack tips had apparent influence by the geometry forms of cracks and media with different anisotropic degrees. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
从弹性波在介质中传播的特点和弹性波法在岩体工程中的实际应用情况方面,分析了弹性波在含裂隙岩体介质中的传播特征。将岩体中裂隙呈随机分布的裂隙岩体似为准各向同性裂隙岩体,根据能量平衡原理、岩石断裂力学理论和卡氏最小功能定理(Castiglano’s theorem),确定了准各向同性裂隙岩体的有效动弹性参数( 、 、 )与裂隙密度参数(Xv)的数学关系。在此基础上,根据各向同性介质中传播的弹性波理论,建立了准各向同性裂隙岩体中弹性波速( 、 )和 / 与裂隙密度参数(Xv)之间的关系。理论研究表明,在此裂隙岩体中,有效动弹性参数和弹性波速与裂纹密度参数之间相互的关系均近似成倒数函数的非线性关系;裂隙密度参数增加,有效动弹性模量( )也减少,弹性波速( , )也减小;在裂隙密度参数较小时,此裂隙岩体的有效弹性模量和弹性波速随裂隙密度参数的变化较大,说明裂隙体的有效弹性参数和弹性波速对裂隙体非常敏感。  相似文献   

4.
基于线弹性断裂力学裂隙面张开位移及剪切位移理论公式,考虑裂隙存在常法向和常切向刚度情况,研究了含单个裂隙岩体加载过程中由于裂隙存在而附加的弹性应变能。基于应变能等效方法并假设两种裂隙变形模型--非均匀变形模型和均匀变形模型,研究了二维非贯通裂隙岩体的等效杨氏模量和等效剪切模量解析表达式。研究结果表明,对于贯通裂隙规则分布情况,均匀变形模型得到的解析解与Amadei等的结果一致;对于非贯通裂隙正态分布情况,考虑裂隙相互作用的非均匀变形模型解明显低估裂隙岩体的等效杨氏模量和等效剪切模量,而考虑裂隙相互作用的均匀变形模型解与有限元数值解的偏差在10%以内。得到的解析表达式在一定条件下可以作为裂隙岩体等效弹性模量评价方法之一。  相似文献   

5.
纪维伟  潘鹏志  苏方声  杜梦萍 《岩土力学》2016,37(11):3079-3088
为了弄清深埋硬岩的加、卸荷破坏机制,系统开展了深埋大理岩的常规三轴试验、保持 不变的卸围压试验和变 的卸围压试验等。以裂纹体应变为主要分析变量,结合体应变、等效塑性应变等参量深入分析上述不同应力路径下硬岩的破坏过程。运用裂纹体应变-轴向应变曲线、等效塑性应变-轴向应变曲线和轴向应力-应变曲线来解释岩石破坏过程所产生的现象与规律。结果表明:在裂纹闭合阶段岩样裂纹闭合的变化程度(裂纹体应变改变的大小)可以反映岩石的初始损伤程度;裂纹闭合阶段对岩石弹性模量的计算有重要的影响,需要根据合适的阶段划分,消除裂纹闭合阶段对弹性模量计算的影响,进而得到较为准确的弹性模量;在卸围压点处岩石的可闭合程度突然增加,裂纹体应变-轴向应变曲线发生突变;岩石卸荷破坏过程中裂纹扩展存在滞后性。研究成果有助于进一步理解深埋硬岩的加、卸荷破坏过程和机制,为深埋隧洞的灾害防治提供理论依据。  相似文献   

6.
在回顾封闭平行硬币状裂缝模型的基础上,将裂缝填充物性质、分布密度与背景介质的横纵波速度比,引入裂缝型水平横向各向同性介质纵波、转换横波弹性阻抗公式,并进行归一化弹性阻抗响应特征模拟。分析表明:裂缝介质弹性阻抗呈现方位各向异性,且随裂缝密度加大而增强;纵波、转换横波弹性阻抗在值域分布规律上具有较大区别;在典型砂岩介质的前提下,弹性阻抗差可以作为裂缝含气、含水指示因子定性地识别裂缝填充物性质。  相似文献   

7.
In a cracked material, the stress intensity factors (SIFs) at the crack tips, which govern the crack propagation and are associated with the strength of the material, are strongly affected by the crack inclination angle and the orientation with respect to the principal direction of anisotropy. In this paper, a formulation of the boundary element method (BEM), based on the relative displacements of the crack tip, is used to determine the mixed‐mode SIFs of isotropic and anisotropic rocks. Numerical examples of the application of the formulation for different crack inclination angles, crack lengths, and degree of material anisotropy are presented. Furthermore, the BEM formulation combined with the maximum circumferential stress criterion is adopted to predict the crack initiation angles and simulate the crack propagation paths. The propagation path in cracked straight through Brazilian disc specimen is numerically predicted and the results of numerical and experimental data compared with the actual laboratory observations. Good agreement is found between the two approaches. The proposed BEM formulation is therefore suitable to simulate the process of crack propagation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of desiccation cracks in soils has received increasing attention in the last few years, in both experimental investigations and modeling. Experimental research has been mainly focused on the behavior of slurries subjected to drying in plates of different shapes, sizes and thickness. The main objectives of these studies were to learn about the process of crack formation under controlled environmental conditions, and also to understand better the impact of different factors (e.g. soil type, boundary conditions, soil thickness) on the morphology of the crack network. As for the numerical modeling, different approaches have been proposed to describe the behavior of drying cracks in soils. One aspect that it is still difficult to simulate properly is the 3-D crack pattern typically observed in desiccated soils. In this work we present a numerical technique to model the behavior of drying soils. The proposed approach inserts high aspect ratio elements in-between standard elements of a finite element mesh. This mesh fragmentation technique can be easily adapted to standard finite element programs. We used this technique to analyze multiple case studies related to soil desiccation cracks developed under laboratory and field conditions. We focused our attention in some key factors that control the 3-D morphology of the drying cracks network in soils. We show that the proposed technique is able to simulate very satisfactorily the main patterns typically observed in cracked soils.  相似文献   

9.
朱学亮  邵生俊  沈晓钧  邵帅  刘小康 《岩土力学》2022,43(10):2735-2743
黄土边坡中竖直裂隙的发育往往会对边坡稳定产生影响。相对于平面应变机制,建立三维破坏机制下边坡稳定性分析方法更能接近实际边坡失稳情况。基于塑性极限分析上限法,考虑预先存在竖直裂隙的三维黄土边坡不同破坏机制(坡面破坏、坡脚破坏和坡底破坏),建立能量平衡方程及其无量纲临界高度值γH/c表达式,采用随机搜索法得到了临界高度的上限解。分析了约束宽度、边坡坡度、内摩擦角以及裂隙深度对三维竖直裂隙黄土边坡临界高度值的影响。结果表明:对于坡脚破坏机制,临界高度值随着裂隙深度的增加而减小,减小至临界裂隙深度 (δ /H)min后,裂隙深度的增加不再影响临界高度值;临界裂隙深度随着坡度β 的增大而增大,随着内摩擦角φ 的增大而减小。当约束宽度B/H<0.8时,大多数破坏机制为坡面破坏。当约束宽度B/H=0.8、内摩擦角φ =10° 及约束宽度B/H=0.6、内摩擦角φ =15° 时,边坡的破坏从坡面破坏机制逐渐过渡到坡脚破坏机制。存在竖直裂隙的黄土边坡比完整边坡具有更小的临界高度,约束宽度及内摩擦角会对三维黄土边坡破坏机制产生影响。  相似文献   

10.
膨胀土易发育大量裂隙,对其工程性质影响显著。引入一种膨胀土试样预制裂隙方法,对特定裂隙形态下膨胀土试样开展无侧限抗压试验,研究了膨胀土强度特征受裂隙形态的影响,并揭示了裂隙的作用机制。研究结果表明:(1)裂隙形态显著影响试样破坏模式,垂直于受力方向裂隙越宽,破坏模式由剪切-拉伸破坏向张拉破坏转变;平行于受力方向裂隙条数...  相似文献   

11.
12.
In this paper, a coupled constitutive model is proposed for anisotropic damage and permeability variation in brittle rocks under deviatoric compressive stresses. The formulation of the model is based on experimental evidences and main physical mechanisms involved in the scale of microcracks are taken into account. The proposed model is expressed in the macroscopic framework and can be easily implemented for engineering application. The macroscopic free enthalpy of cracked solid is first determined by approximating crack distribution by a second‐order damage tensor. The effective elastic properties of damaged material are then derived from the free enthalpy function. The damage evolution is related to the crack growth in multiple orientations. A pragmatic approach inspired from fracture mechanics is used for the formulation of the crack propagation criterion. Compressive stress induced crack opening is taken into account and leads to macroscopic volumetric dilatancy and permeability variation. The overall permeability tensor of cracked material is determined using a micro–macro averaging procedure. Darcy's law is used for fluid flow at the macroscopic scale whereas laminar flow is assumed at the microcrack scale. Hydraulic connectivity of cracks increases with crack growth. The proposed model is applied to the Lac du Bonnet granite. Generally, good agreement is observed between numerical simulations and experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
魏元龙  杨春和  郭印同  刘伟  王磊  衡帅 《岩土力学》2015,36(6):1649-1658
利用RMT–150C岩石力学测试系统,对重庆彭水含天然裂隙脆性页岩在单轴循环荷载作用下的变形及破裂特征进行了试验研究。研究结果表明:(1)在循环加卸载和裂隙的共同影响下页岩所含天然裂隙使页岩性质局部劣化、加剧裂隙扩展和破坏提前,导致屈服应力、破裂压力和峰值强度等减小,其中峰值强度降低了13.7%~58.3%;(2)轴向应变形成封闭的“尖叶”状滞回环,并呈疏-密-疏排列,而横向应变形成上开口“8”字形滞回环,并呈密-疏排列,横向应变-循环次数曲线可分为初始变形阶段、小速率等速变形阶段、大速率等速变形阶段和失稳破坏阶段等四阶段演化规律,前期横向应变突变现象可作为天然裂隙和新裂隙扩展、交汇完成,进入大速率等速变形阶段的标志,后期突变可作为整体失稳破坏的前兆;(3)含天然裂隙页岩的破坏模式主要呈拉剪贯通模式和拉贯通模式,两种贯通模式均至少包含一条贯通天然裂隙的拉裂隙;(4)在弹性阶段,有效弹性模量与损伤面积系数呈线性关系,损伤面积系数越大,有效弹性模量越小;(5)在低应力水平内循环,不可逆变形缓慢增加,轴向应变-循环次数曲线始终处于初始变形阶段,试样不发生破坏;在高应力水平内循环,经历3个变形阶段后试样发生破坏;在接近峰值应力的应力水平内循环,曲线直接进入加速变形阶段,几次循环后试样发生破坏。该研究为认清页岩的裂隙扩展形成复杂裂隙网的发展机制提供了有益参考。  相似文献   

14.
This paper describes a new technique of strain analysis using passively deformed linear markers which were initially uniformly or symmetrically distributed in a plane. The axial ratio of the strain ellipse is determined from the quartiles or other percentiles of the deformed distribution. The technique permits statistical testing of assumptions and rapid reconstruction of the undeformed state.  相似文献   

15.
Investigations of the engineering geological, physical and rock mechanical properties have been carried out on Carboniferous core samples of the research wells Geverik, Kastanjelaan and Heugem in South Limburg, The Netherlands over a total length of 2687 m. On the basis of a mathematical modeling of the deformation and anisotropy of the Variscan-folded Carboniferous, the following parameters were determined: density, porosity, water resumption and specific permeability for gas.

Dynamic, static and uniaxial compression tests were performed in order to obtain direction-dependent data like dynamic elasticity modulus, static elasticity modulus (Young's modulus), shear modulus and the Poisson's ratios. Additionally, the stress–strain behaviors were determined by uniaxial strength, tensile strength and shear strength tests. For the evaluation of the anisotropy of the rock mass caused by tectonic movements, ultrasonic measurements were of greatest importance. The results show that the ultrasonic velocities of p- and s-waves are dependent on the rock type, the tectonic configuration and the degree of saturation.

The stress–strain behavior of mud, sand and marly limestones shows an orthogonal anisotropy, while limestones and siliceous limestones are quasi-isotropic. The anisotropy is related and parallel to the main tectonic axis and also to the rock texture.  相似文献   


16.
The aim of this study is to investigate the effect of pre‐existing, or structural, cracks on dynamic fragmentation of granite. Because of the complex behavior of rock materials, a continuum approach is employed relying upon a plasticity model with yield surface locus as a quadratic function of the mean pressure in the principal stress space coupled with an anisotropic damage model. In particular, Bohus granite rock is investigated, and the material parameters are chosen based on previous experiments. The equation of motion is discretized using a finite element approach, and the explicit time integration method is employed. The pre‐existing cracks are introduced in the model by considering sets of elements with negligible tensile strength that leads to their immediate failure when loaded in tension even though they still carry compressive loads as crack closure occurs because of compressive stresses. Previously performed edge‐on impact tests are reconsidered here to validate the numerical model. Percussive drilling is simulated, and the influence of the presence of pre‐existing cracks is studied. The results from the analysis with different crack lengths and orientations are compared in terms of penetration stiffness and fracture pattern. It is shown that pre‐existing cracks in all investigated cases facilitate the drilling process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Drying of deformable porous media results in their shrinkage, and it may cause cracking provided that shrinkage deformations are hindered by kinematic constraints. Herein, we focus on slow drying of an initially water‐saturated sample of a microheterogeneous poroelastic material damaged by parallel mesocracks. The cracking risk is analyzed by means of the thermodynamics‐based microporoelasticity model described in the companion paper (Part I), which is extended toward consideration of the hierarchical organization of cracked argillite. Drying of a material sample is studied in a framework where macrodisplacements in direction of the crack normal are blocked, while elsewise macrostress‐free boundary conditions prevail. The model implies that the opening/closure behavior of the cracks is governed by an effective pressure, in which the average crack (under)pressure, making the crack opening smaller, competes with the average micropore (under)pressure that makes the crack opening larger. The driving force for crack propagation is a quadratic function of this effective pressure. The model proposes that if drying shrinkage deformations are hindered by kinematic constraints, onset of cracking becomes possible once air entry into the cracks is observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   

19.
A new numerical approach is proposed in this study to model the mechanical behaviors of inherently anisotropic rocks in which the rock matrix is represented as bonded particle model, and the intrinsic anisotropy is imposed by replacing any parallel bonds dipping within a certain angle range with smooth‐joint contacts. A series of numerical models with β = 0°, 15°, 30°, 45°, 60°, 75°, and 90° are constructed and tested (β is defined as the angle between the normal of weak layers and the maximum principal stress direction). The effect of smooth‐joint parameters on the uniaxial compression strength and Young's modulus is investigated systematically. The simulation results reveal that the normal strength of smooth‐joint mainly affects the behaviors at high anisotropy angles (β > 45°), while the shear strength plays an important role at medium anisotropy angles (30°–75°). The normal stiffness controls the mechanical behaviors at low anisotropy angles. The angle range of parallel bonds being replaced plays an important role on defining the degree of anisotropy. Step‐by‐step procedures for the calibration of micro parameters are recommended. The numerical model is calibrated to reproduce the behaviors of different anisotropic rocks. Detailed analyses are conducted to investigate the brittle failure process by looking at stress‐strain behaviors, increment of micro cracks, initiation and propagation of fractures. Most of these responses agree well with previous experimental findings and can provide new insights into the micro mechanisms related to the anisotropic deformation and failure behaviors. The numerical approach is then applied to simulate the stress‐induced borehole breakouts in anisotropic rock formations at reduced scale. The effect of rock anisotropy and stress anisotropy can be captured. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号