首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper a very general rainfall-runoff model structure (described below) is shown to reduce to a unit hydrograph model structure. For the general model, a multi-linear unit hydrograph approach is used to develop subarea runoff, and is coupled to a multi-linear channel flow routing method to develop a link-node rainfall-runoff model network. The spatial and temporal rainfall distribution over the catchment is probabilistically related to a known rainfall data source located in the catchment in order to account for the stochastic nature of rainfall with respect to the rain gauge measured data. The resulting link node model structure is a series of stochastic integral equations, one equation for each subarea. A cumulative stochastic integral equation is developed as a sum of the above series, and includes the complete spatial and temporal variabilities of the rainfall over the catchment. The resulting stochastic integral equation is seen to be an extension of the well-known single area unit hydrograph method, except that the model output of a runoff hydrograph is a distribution of outcomes (or realizations) when applied to problems involving prediction of storm runoff; that is, the model output is a set of probable runoff hydrographs, each outcome being the results of calibration to a known storm event.  相似文献   

2.
Rainfall-runoff modelling uncertainty can be analysed by the use of a stochastic integral formulation. The stochastic integral equation can be based on the rainfall–runoff model input of model rainfall or model rainfall excess. Similarly, the stochastic integral equation can be based on the rainfall–runoff model output of the modelled runoff hydrograph. The residual between actual measured runoff data and modelled runoff (from the rainfall–runoff model) is analysed here by the use of a stochastic integral equation. This approach is used to develop a set of convolution integral transfer function realizations that represent the chosen rainfall–runoff modelling error. The resulting stochastic integral component is a distribution of possible residual outcomes that may be directly added to the rainfall–runoff model's deterministic outcome, to develop a distribution of probable runoff hydrograph realizations from the chosen rainfall–runoff model.  相似文献   

3.
The design storm approach, where the subject criterion variable is evaluated by using a synthetic storm pattern composed of identical return frequencies of storm pattern input, is shown to be an effective approximation to a considerably more complex probabilistic model. The single area unit hydrograph technique is shown to be an accurate mathematical model of a highly discretized catchment with linear routing for channel flow approximation, and effective rainfalls in subareas which are linear with respect to effective rainfall output for a selected “loss” function. The use of a simple “loss” function which directly equates to the distribution of rainfall depth-duration statistics (such as a constant fraction of rainfall, or a ?-index model) is shown to allow the pooling of data and thereby provide a higher level of statistical significance (in estimating T-year outputs for a hydrologic criterion variable) than use of an arbitrary “loss” function. The above design storm unit hydrograph approach is shown to provide the T-year estimate of a criterion variable when using rainfall data to estimate runoff.  相似文献   

4.
A lower bound for variance in surface runoff modelling estimates is advanced. The bound is derived using a linear unit hydrograph approach which utilizes a discretization of the catchment into an arbitrary number of subareas, a linear routing technique for channel flow effects, a variable effective rainfall distribution over the catchment, and calibration parameter distributions developed in correlating rainfall-runoff data by the model. The uncertainty bound reflects the dominating influence of the unknown rainfall distribution over the catchment and is expressed as a distribution function that can be reduced only by supplying additional rainfall-runoff data. It is recommended that this uncertainty distribution in modelling results be included in flood control design studies in order to incorporate a prescribed level of confidence in flood protection facilities.  相似文献   

5.
A technique is presented for empirical and parametric estimation of an average event unit hydrograph response curve solely from measured streamflow data for use in rainfall-runoff models with a focus on modelling flow for natural resource management. As the technique does not require rainfall data, the unit hydrograph can be derived solely from streamflow data at a temporal resolution appropriate for the response of the catchment. The response curves derived for a number of stations show a power law relationship of decay in flow after peak that can be described using a three-parameter function. The approach is best suited to ephemeral streamflow regimes dominated by surface and near-surface runoff (quick-flow component) where flow events are well-separated and largely independent of each other. Analysis of the derived unit hydrograph for 28 quick-flow-dominated catchments illustrates the range of parameter values obtained in fitting the power law.  相似文献   

6.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A unit hydrograph model is proposed in which the watershed is decomposed into subareas which are individual cells or zones of neighbouring cells. The unit hydrograph is found for each subarea and the response at the outlet to excess rainfall on each subarea is summed to produce the watershed runoff hydrograph. The cell to cell flow path to the watershed outlet is determined from a digital elevation model. A constant flow velocity is assigned to each cell and the time lag between subarea input and response at the watershed outlet is found by integrating the flow time along the path from the subarea to the outlet. The response function for a subarea is modelled as a lagged linear reservoir in which the flow time is equal to the sum of a time of translation and an average residence time in the reservoir. It is shown that the assumption of a spatially varying, but time-invariant, velocity field underlying this model produces a linear system model for all subareas whose outputs can be summed in the manner indicated. An example application is presented for the 8.70 km2 Severn watershed at Plynlimon in Wales using a 50 m digital elevation model in which the cell velocity is calculated by modifying an average watershed velocity according to the terrain slope and the drainage area of each cell. The resulting model reasonably reproduces the observed unit hydrograph.  相似文献   

8.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The Meixner functions are utilized to relate the effective rainfall, the direct runoff and the unit hydrograph through linkage equations. The linkage equations are then employed to derive the unit hydrograph for given rainfall-runoff data on a small agricultural watershed. These functions are tested with regard to their ability to reproduce and predict the direct runoff hydrograph. The Meixner functions are found to be an effective analytical tool for hydrograph synthesis. Further, they compare well with the least squares and linear programming methods of the unit hydrograph derivation.  相似文献   

12.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Soil erosion by water is the root cause of ecological degradation in the Shiwalik foothills of Northern India. Simulation of runoff and its component processes is a pre‐requisite to develop the management strategies to tackle the problem, successfully. A two‐dimensional physically based distributed numerical model, ROMO2D has been developed to simulate runoff from small agricultural watersheds on an event basis. The model employs the 2‐D Richards equation with sink term to simulate infiltration and soil moisture dynamics in the vadoze zone under variable rainfall conditions, and 2‐D Saint‐Venant equations under the kinematic wave approximation along with Manning's equation as the stage‐discharge equation for runoff routing. The various flow‐governing equations have been solved numerically by employing a Galerkin finite element method for spatial discretization using quadrilateral elements and finite difference techniques for temporal solutions. The ROMO2D computer program has been developed as a class‐based program, coded in C + + in such a way that with minor modifications, the model can be used to simulate runoff on a continuous basis. The model writes output for a runoff hydrograph of each storm. Model development is described in this paper and the results of model testing and field application are to be presented in a subsequent paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

A hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed based on the combined concept of Clark’s unit hydrograph and its spatial decomposition methods, incorporating refined spatially variable flow dynamics to implement hydrological simulation for spatially distributed rainfall–runoff flow. In Distributed-Clark, the Soil Conservation Service (SCS) curve number method is utilized to estimate spatially distributed runoff depth and a set of separated unit hydrographs is used for runoff routing to obtain a direct runoff flow hydrograph. Case studies (four watersheds in the central part of the USA) using spatially distributed (Thiessen polygon-based) rainfall data of storm events were used to evaluate the model performance. Results demonstrate relatively good fit to observed streamflow, with a Nash-Sutcliffe efficiency (ENS) of 0.84 and coefficient of determination (R2) of 0.86, as well as a better fit in comparison with outputs of spatially averaged rainfall data simulations for two models including HEC-HMS.  相似文献   

15.
A geomorphological instantaneous unit hydrograph (GIUH) rainfall‐runoff model was applied in a 31 km2 montane catchment in Scotland. Modelling was based on flow path length distributions derived from a digital terrain model (DTM). The model was applied in two ways; a single landscape unit response based on the DTM alone, and a two‐landscape unit response, which incorporated the distribution of saturated areas derived from field‐validated geographic information system (GIS) analysis based on a DTM and soil maps. This was to test the hypothesis that incorporation of process‐information would enhance the model performance. The model was applied with limited multiple event calibration to produce parameter sets which could be applied to a spectrum of events with contrasting characteristics and antecedent conditions. Gran alkalinity was used as a tracer to provide an additional objective measure for assessing model performance. The models captured the hydrological response dynamics of the catchment reasonably well. In general, the single landscape unit approach produced the best individual model performance statistics, though the two‐landscape unit approach provided a range of models, which bracketed the storm hydrograph response more realistically. There was a tendency to over‐predict the rising limb of the hydrograph, underestimate large storm event peaks and anticipate the hydrograph recession too rapidly. Most of these limitations could be explained by the simplistic assumptions embedded within the GIUH approach. The modelling also gave feasible predictions of stream water chemistry, though these could not be used as a basis for model rejection. Nevertheless, the study suggested that the approach has potential for prediction of hydrological response in ungauged montane headwater basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Information on the spatial and temporal origin of runoff entering the channel during a storm event would be valuable in understanding the physical dynamics of catchment hydrology; this knowledge could be used to help design flood defences and diffuse pollution mitigation strategies. The majority of distributed hydrological models give information on the amount of flow leaving a catchment and the pattern of fluxes within the catchment. However, these models do not give any precise information on the origin of runoff within the catchment. The spatial and temporal distribution of runoff sources is particularly intricate in semi‐arid catchments, where there are complex interactions between runoff generation, transmission and re‐infiltration over short temporal scales. Agents are software components that are capable of moving through and responding to their local environment. In this application, the agents trace the path taken by water through the catchment. They have information on their local environment and on the basis of this information make decisions on where to move. Within a given model iteration, the agents are able to stay in the current cell, infiltrate into the soil or flow into a neighbouring cell. The information on the current state of the hydrological environment is provided by the environment generator. In this application, the Connectivity of Runoff Model (CRUM) has been used to generate the environment. CRUM is a physically based, distributed, dynamic hydrology model, which considers the hydrological processes relevant for a semi‐arid environment at the temporal scale of a single storm event. During the storm event, agents are introduced into the model across the catchment; they trace the flows of water and store information on the flow pathways. Therefore, this modelling approach is capable of giving a novel picture of the temporal and spatial dynamics of flow generation and transmission during a storm event. This is possible by extracting the pathways taken by the agents at different time slices during the storm. The agent based modelling approach has been applied to two small catchments in South East Spain. The modelling approach showed that the two catchments responded differently to the same rainfall event due to the differences in the runoff generation and overland flow connectivity between the two catchments. The model also showed that the time of travel to the nearest flow concentration is extremely important for determining the connectivity of a point in the landscape with the catchment outflow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
I. MUZIK 《水文研究》1996,10(10):1401-1409
The concept of a spatially distributed unit hydrograph is based on the fact that the unit hydrograph can be derived from the time–area curve of a watershed by the S-curve method. The time–area diagram is a graph of cumulative drainage area contributing to discharge at the watershed outlet within a specified time of travel. Accurate determination of the time–area diagram is made possible by using a GIS. The GIS is used to describe the connectivity of the links in the watershed flow network and to calculate distances and travel times to the watershed outlet for various points within the watershed. Overland flow travel times are calculated by the kinematic wave equation for time to equilibrium; channel flow times are based on the Manning and continuity equations. To account for channel storage, travel times for channel reaches are increased by a percentage depending on the channel reach length and geometry. With GIS capability for rainfall mapping, the assumption of a uniform spatial rainfall distribution is no longer necessary; hence the term, spatially distributed unit hydrograph. An example of the application for the Waiparous Creek in the Alberta Foothills is given. IDRISI is used to develop a simple digital elevation model of the 229 km2 watershed, using 1 km × 1 km grid cells. A grid of flow directions is developed and used to create an equivalent channel network. Excess rainfall for each 1 km × 1 km cell is individually computed by the Soil Conservation Service (SCS) runoff curve method and routed through the equivalent channel network to obtain the time–area curve. The derived unit hydrograph gave excellent results in simulating an observed flood hydrograph. The distributed unit hydrograph is no longer a lumped model, since it accounts for internal distribution of rainfall and runoff. It is derived for a watershed without the need for observed rainfall and discharge data, because it is essentially a geomorphoclimatic approach. As such, it allows the derivation of watershed responses (hydrographs) to inputs of various magnitudes, thus eliminating the assumption of proportionality of input and output if needed. The superposition of outputs is retained in simulating flood hydrographs by convolution, since it has been shown that some non-linear systems satisfy the principle of superposition. The distributed unit hydrograph appears to be a very promising rainfall runoff model based on GIS technology.  相似文献   

19.
The convolution assumption between excess rainfall and runoff provides a framework in which catchment runoff can be predicted with reasonable accuracy and moderate computational cost. Associated with it, the deconvolution problem of estimating unitgraph ordinates from rainfall–runoff events involves a matrix with a particularly simple structure. This matrix structure is used here as a basis on which the ill-posed nature of deconvolution is analysed. As a result, based on a simple transform of the excess rainfall data, a very simple criterion is derived to test the degree to which deconvolution may yield a unit hydrograph estimate displaying spurious oscillations of large magnitude. This has practical implications as the solution to an ill-posed problem can be very sensitive to errors in the model and the data and therefore may need to be stabilized. Illustration of these issues is provided using published rainfall–runoff data.  相似文献   

20.
Abstract

The manner in which both the seasonal and regional variations in storm duration, intensity and inter-storm period manifest in the runoff response of agricultural water supply catchments is investigated. High-resolution rainfall data were analysed for a network of 17 raingauges located across the semiarid (200–500 mm year?1) agricultural districts of southwest Western Australia. Seasonal variations in mean storm duration, mean rainfall intensity and mean inter-storm period were modelled using simple periodic functions whose parameters were then also regressed with geographic and climatic indices to create spatial fields for each of these statistics. Based on these mean values, a continuous rainfall time series can be synthesized for any location within the region, with the rainfall depth within each storm being downscaled to 5-min time steps using a bounded random cascade model. Runoff from six different catchment surface treatments (“engineered” catchments) was simulated using a conceptual water-balance model, validated using rainfall—runoff data from an experimental field site. The expected yield of the various catchment types at any other location within the study region is then simulated using the above rainfall—runoff model and synthetic rainfall and potential evaporation time series under a range of climatic settings representative of regional climate variation. The resulting coupled model can be used to estimate the catchment area required to yield an acceptable volume of runoff for any location and dam capacity, at a specified reliability level, thus providing a tool for water resource managers to design engineered catchments for water supply. Although the model presented is specific for Western Australia's southwest region, the methodology itself is applicable to other locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号