首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

2.
Planetary noble gases in chondrites are concentrated in an unidentified carrier phase, called “Q.” Phase Q oxidized at relatively low temperature in pure oxygen is a very minor part of insoluble organic matter (IOM), but has not been separated in a pure form. High‐pressure (HP) experiments have been used to test the effects of thermal metamorphism on IOM from the Orgueil (CI1) meteorite, at conditions up to 10 GPa and 700 °C. The effect of the treatment on carbon structural order was characterized by Raman spectroscopy of the carbon D and G bands. The Raman results show that the IOM becomes progressively more graphite‐like with increasing intensity and duration of the HP treatment. The carbon structural transformations are accompanied by an increase in the release temperatures for IOM carbon and 36Ar during stepped combustion (the former to a greater extent than the latter for the most HP treated sample) when compared with the original untreated Orgueil (CI1) sample. The 36Ar/C ratio also appears to vary in response to HP treatment. Since 36Ar is a part of Q, its release temperature corresponds to that for Q oxidation. Thus, the structural transformations of Q and IOM upon HP treatment are not equal. These results correspond to observations of thermal metamorphism in the meteorite parent bodies, in particular those of type 4 enstatite chondrites, e.g., Indarch (EH4), where graphitized IOM oxidized at significantly higher temperatures than Q (Verchovsky et al. 2002 ). Our findings imply that Q is less graphitized than most of the macromolecular carbonaceous material present during parent body metamorphism and is thus a carbonaceous phase distinct from other meteoritic IOM.  相似文献   

3.
Abstract— Fine material that floats during freeze-thaw disaggregation of the Allende meteorite is greatly enriched in noble gases compared to the bulk meteorite. Not only the elemental concentrations, but also most isotopic ratios of the noble gases in this fraction, strongly suggest that this material is very similar to the gas-rich carbonaceous residue isolated from the bulk meteorite by chemical treatment. The only significant difference in noble gas signature between our separated fraction and the chemical residues is that the 129Xe/132Xe ratio in the former is significantly lower than that in the latter, which suggests readsorption of 129Xe released from the dissolved minerals during the chemical treatment. This is the first time that a gas-rich residue of a meteorite has been separated by a purely physical method alone. We also show that noble gases in phase Q and presolar diamond may be separable physically, although both are closely associated.  相似文献   

4.
We analyzed noble gases in an oxidized residue prepared from a HF‐HCl residue of the Saratov L4 chondrite. The Ar, Kr, and Xe concentrations in the oxidized residue are two orders of magnitude lower than those in the HF‐HCl residue, and they are close to concentrations in the bulk. The He and Ne concentrations are similar in the three samples. The Ne isotopic ratios are almost purely cosmogenic, indicating absence of presolar diamonds (the carrier of the HL component). Thus, Saratov contains phase Q without presolar diamond. A study of the Raman spectroscopic parameters for the HF‐HCl residue and the oxidized residue shows large changes due to oxidation. The directions of these changes are the same as observed in Allende, except oxidation increased the ID/IG (intensity ratio of the D band to the G band) in Saratov but decreased in Allende. This difference may be attributed to the different crystalline stages of carbon in both meteorites. The shifts in the Raman parameters to a discrete and/or more expanded region suggest that (1) oxidation changes the crystalline condition of graphitic carbon, (2) phase Q is not a dissolved site, and (3) the release of Q‐gas is simply related to the rearrangement of the carbon structure during oxidation.  相似文献   

5.
Abstract— A fine‐grained dark inclusion in the Ningqiang carbonaceous chondrite consists of relatively pristine solar nebular materials and has high concentrations of heavy primordial rare gases. Trapped 36Ar concentration amounts to 6 times 10?6 cc STP/g, which is higher than that of Ningqiang host by a factor of three. Light HF‐HCl etching of the dark inclusion removed 86, 73, and 64% of the primordial 36Ar, 84Kr, and 132Xe, respectively. Thus, the majority of the noble gases in this inclusion are located in very acid‐susceptive material. Based on the elemental composition, the noble gases lost from the dark inclusion during the acid‐treatments are Ar‐rich, and the noble gases remaining in the inclusion are Q and HL gases. Transmission electron microscopy showed that the acid treatments removed thin Si, Mg, and Fe‐rich amorphous rims present around small olivine and pyroxene grains in the dark inclusion, suggesting that the Ar‐rich gases reside in the amorphous layers. A possible origin of the Ar‐rich gases is the acquisition of noble‐gas ions with a composition fractionated relative to solar abundance favoring the heavy elements by the effect of incomplete ionization under plasma conditions at 8000 K electron temperature.  相似文献   

6.
Abstract— High‐resolution transmission electron microscopy micrographs of acid‐resistant residues of the Allende, Leoville, and Vigarano meteorites show a great variety of carbon structures: curved and frequently twisted and intertwined graphene sheets, abundant carbon black‐like particles, and hollow “sacs”. It is suggested that perhaps all of these are carriers for the planetary Q‐noble gases in these meteorites. Most of these materials are pyrocarbons that probably formed by the pyrolysis of hydrocarbons either in a gas phase, or on hot surfaces of minerals. An attempt was made to analyze for argon with particle‐induced x‐ray emission in 143 spots of grains of floating and suspended matter from freeze‐dry cycles of an Allende bulk sample in water, and floating “black balls” from sonication in water of samples from the Allende meteorite. The chemical compositions of these particles were obtained, but x‐ray signals at the wavelength of argon were obtained on only a few spots.  相似文献   

7.
Deuterium abundance measurements and the 13C NMR spectrum of the HF/HCl insoluble residue of the Orgueil carbonaceous chondrite indicate the presence of an extensive component of polycyclic aromatic hydrocarbons (PAH) that is of possible interstellar origin or is similar to PAH hypothesized to exist in interstellar space. Infrared spectra have been obtained using an FTIR spectrometer of the acid insoluble residue, the residue after heating in vacuum, and condensate. Bulk acid insoluble residue was pressed into KBr pellets and also heated under high vacuum to sublimate a volatile component onto KBr disks. The remaining non-volatile organic component of the Orgueil meteorite from such evaporations pressed into KBr pellets exhibits a spectral signature similar to that observed in emission from the Orion Nebula and found in Raman spectra of interplanetary dust particles (IDPs). In addition it has an 11.3 microns (885 cm-1) band indicating PAH having single hydrogens per peripheral aromatic ring. We conclude the nonvolatile material is similar to interstellar PAH because the observed 11.3 microns (885 cm-1) unidentified infrared (UIR) emission suggests interstellar PAH have single hydrogens per peripheral aromatic ring. The volatile fraction of the Orgueil shows an aliphatic CH stretch feature and its spectrum in the 2-25 microns range is similar to that of the bulk residue.  相似文献   

8.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   

9.
Refractory metal nuggets (RMNs) contain elements, such as Os, Ir, Mo, and Ru, which are predicted to condense from a cooling gas of solar composition simultaneously with CAI‐minerals. Berg et al. ( 2009 ) identified a large number of RMNs in acid‐resistant residues of the Murchison meteorite and suggested that they are pristine condensates. In extending the work of these authors, we have improved the chemical extraction process to enrich the concentration of RMNs in the residue sample and prepared three additional RMN‐rich residues from the chondritic meteorites Murchison, Allende, and Leoville. The results show that, while their origin is clearly solar, the compositions in detail of RMNs from all three meteorites do not match well with a simple condensation model based on equilibrium thermodynamics and ideal solid solution of all metals. Thus, we find that a primary formation by direct condensation, as suggested previously, is unlikely for most of the studied grains and that alternative scenarios should be considered in future work. The results also show that several, but not all, alloys from Allende and Leoville have undergone processes, such as metamorphic oxidation and sulfidization in the meteoritic environment, in which they lost, e.g., W and Mo. For Murchison and several Leoville and Allende RMNs, we propose a pristine nature.  相似文献   

10.
Effects of aqueous alteration on primordial noble gas carriers were investigated by analyzing noble gases and determining presolar SiC abundances in insoluble organic matter (IOM) from four Tagish Lake meteorite (C2‐ung.) samples that experienced different degrees of aqueous alteration. The samples contained a mixture of primordial noble gases from phase Q and presolar nanodiamonds (HL, P3), SiC (Ne‐E[H]), and graphite (Ne‐E[L]). The second most altered sample (11i) had a ~2–3 times higher Ne‐E concentration than the other samples. The presolar SiC abundances in the samples were determined from NanoSIMS ion images and 11i had a SiC abundance twice that of the other samples. The heterogeneous distribution of SiC grains could be inherited from heterogeneous accretion or parent body alteration could have redistributed SiC grains. Closed system step etching (CSSE) was used to study noble gases in HNO3‐susceptible phases in the most and least altered samples. All Ne‐E carried by presolar SiC grains in the most altered sample was released during CSSE, while only a fraction of the Ne‐E was released from the least altered sample. This increased susceptibility to HNO3 likely represents a step toward degassing. Presolar graphite appears to have been partially degassed during aqueous alteration. Differences in the 4He/36Ar and 20Ne/36Ar ratios in gases released during CSSE could be due to gas release from presolar nanodiamonds, with more He and Ne being released in the more aqueously altered sample. Aqueous alteration changes the properties of presolar grains so that they react similar to phase Q in the laboratory, thereby altering the perceived composition of Q.  相似文献   

11.
Abstract— Ar‐rich noble gases, the so‐called “subsolar” noble gases, are a major component of heavy primordial noble gases in unequilibrated ordinary chondrites and some classes of anhydrous carbonaceous chondrites, whereas they are almost absent in hydrous carbonaceous chondrites that suffered extensive aqueous alteration. To understand the effects of aqueous alteration on the abundance of Ar‐rich noble gases, we performed an aqueous alteration experiments on the Ningqiang type 3 carbonaceous chondrite that consists entirely of anhydrous minerals and contains Ar‐rich noble gases. Powdered samples and deionized neutral water were kept at 200 °C for 10 and 20 days, respectively. Mineralogical analyses show that, during the 10‐day alteration, serpentine and hematite formed at the expense of olivine, low‐Ca pyroxene, and sulfide. Noble gas analyses show that the 10‐day alteration of natural Ningqiang removed 79% of the primordial 36Ar, 68% of the 84Kr, and 60% of the 132Xe, but only 45% of the 4He and 53% of the primordial 20Ne. Calculated elemental ratios of the noble gases removed during the 10‐day alteration are in the range of those of Ar‐rich noble gases. These results indicate that Ar‐rich noble gases are located in materials that are very susceptible to aqueous alteration. In contrast, heavy primordial noble gases remaining in the altered samples are close to Q gas in elemental and isotope compositions. This indicates that phase Q is much more resistant to aqueous alteration than the host phases of Ar‐rich noble gases. In the 20‐day sample, the mineralogical and noble gas signatures are basically similar to those of the 10‐day sample, indicating that the loss of Ar‐rich noble gases was completed within the 10‐day alteration. Our results suggest that almost all of the Ar‐rich noble gases were lost from primitive asteroids during early, low‐temperature aqueous alteration.  相似文献   

12.
Abstract— We analyzed the noble gas isotopes in the Fe‐Ni metal and inclusions of the Saint‐Aubin iron meteorite, utilizing the stepwise heating technique to separate the various components of noble gases. The light noble gases in all samples are mostly cosmogenic, with some admixture from the terrestrial atmosphere. Total abundances of noble gases in metal are one of the lowest found so far in iron meteorites and the 4He/21Ne ratio is as high as 503, suggesting that the Saint‐Aubin iron meteorite was derived from a very large meteoroid in space. The exposure ages obtained from cosmogenic 3He were 9–16 Ma. Saint‐Aubin is very peculiar because it contains very large chromite crystals, which—like the metal—contain only cosmogenic and atmospheric noble gases. The noble gases in all the samples do not reveal any primordial components. The only exception is the 1000 °C fraction of schreibersite which contained about 5% of the Xe‐HL component. The Xe‐Q and the El Taco Xe components were not found and only the Xe‐HL is present in this fraction. Some presolar diamond, the only carrier for the HL component known today, must have been available during growth of the schreibersite. However, it is also possible that this excess is due to the addition of cosmogenic and fission components. In this case, all the primordial components are masked (or lost) by the later events such as cosmic‐ray irradiation, heating, and radioactive decay.  相似文献   

13.
Noble gases and nitrogen were measured in two adjacent samples each from the Raghunathpura (IIAB) and the Nyaung (IIIAB) iron meteorite falls. Light noble gases in both the meteorites were of pure cosmogenic origin. Using (3He/4He)c ratios and the production systematic of Ammon et al. ( 2009 ), we estimated the sample depth and meteoroid size for Nyaung (~8 cm depth in a ~15 cm radius object) and Raghunathpura (~12–14 cm depth in a ~25 cm object). We derived cosmic ray exposure ages of 1710 ± 256 Ma (for Nyaung, the highest reported so far for the IIIAB group) and 224 ± 34 Ma (for Raghunathpura). Variable amounts of trapped Kr and Xe were found in both meteorites. The phase Q‐like elemental ratio (84Kr/132Xe) suggests that the trapped component is of indigenous origin, and most likely hosted in the heterogeneously distributed micro‐inclusions of troilite/schreibersite. Trapped phase Q component is being reported for the first time, for a IIAB iron meteorite. Both meteorites showed light isotopic composition for nitrogen, and need at least two N components to explain the observed N isotopic systematic. Variable amounts of trapped noble gases and the presence of more than one N component suggest that the magmatic process that formed the parent body of these meteorites either could not completely homogenize or completely degas all the phases.  相似文献   

14.
If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf‐Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X‐ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present‐day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.  相似文献   

15.
Abstract— Abundances and isotopic compositions of noble gases in metal and graphite of the Bohumilitz IAB iron meteorite were measured. The abundance ratios of spallogenic components in metal reveal a 3He deficiency which is due to the diffusive loss of parent isotopes, that is, tritium (Tilles, 1963; Schultz, 1967). The diffusive loss likely has been induced by thermal heating by the Sun during cosmic‐ray exposure (~160 Ma; Lavielle et al, 1999). Thermal process such as impact‐induced partial loss may have affected the isotopic composition of spallogenic Ne. The 129Xe/131Xe ratio of cosmogenic components in the metal indicates an enhanced production of epi‐thermal neutrons. The abundance ratios of spallogenic components in the graphite reveal that it contained small amounts of metal and silicates. The isotopic composition of heavy noble gases in graphite itself was obtained from graphite treated with HF/HCl. The isotopic composition of the etched graphite shows that it contains two types of primordial Xe (i.e., Q‐Xe and El Taco Xe). The isotopic heterogeneity preserved in the Bohumilitz graphite indicates that the Bohumilitz graphite did not experience any high‐temperature event and, consequently, must have been emplaced into the metal at subsolidus temperatures. This situation is incompatible with an igneous model as well as the impact melting models for the IAB‐IIICD iron meteorites as proposed by Choi et al. (1995) and Wasson et al (1980).  相似文献   

16.
Abstract— Carbonaceous chondrites are among the most analyzed geological materials on Earth. However, despite this attention, and unlike most terrestrial rocks, little is known on the abundance of individual phases within them. Here, we show how a combination of several novel X‐ray diffraction (XRD) techniques (including a high‐brightness X‐ray MicroSource®), and Mössbauer spectroscopy, allows a complete modal mineralogy to be ascertained from even the most highly unequilibrated, fine‐grained chondrites for all minerals of abundance >1 wt%. Knowledge of the modal mineralogy of a sample also allows us to calculate grain density. We analyzed Allende, Murchison, Tagish Lake, and Orgueil. Based on our modal data, the grain density estimates for Allende, Murchison, and Orgueil are close to literature values. In the case of Tagish Lake, there is no published grain density, although a bulk density measurement does exist. Taking our estimate of grain density, and the measured bulk density, we calculate an exceptionally high porosity of 41% for this meteorite, similar to some chondritic IDPs and in line with a porosity calculated from an entry model for the Tagish Lake fireball. Although it is an oxidized CV, magnetite is present in Allende at a level of <0.5 wt% or <0.3 vol%, a result that is substantiated by several other instrumental studies. This may be an oxidized meteorite, but that oxidation is not manifested in abundant magnetite. In addition, we note appreciable fayalitic olivine in Orgueil, detected by both XRD and Mössbauer. We employed MicroSource® XRD to look at heterogeneity in mineral abundance in Orgueil and found substantial variation, with phyllosilicates varying inversely with olivine. The data suggest that Orgueil was initially composed primarily of anhydrous materials, which have been partially, but not completely, altered. Although the data are preliminary, comparison between our XRD modal assessment, bulk chemistry, grain density, and Mössbauer data, suggests that our estimates of mineral abundance are robust. The advent of MicroSource® XRD allows similar modal data to be acquired from samples as small as a few hundred micrograms.  相似文献   

17.
The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018 ). Here, we aim to evaluate the contribution of outer solar system (cometary‐like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high‐precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary‐like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017 ). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.  相似文献   

18.
The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon‐rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound‐specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g?1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent‐body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound‐specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from –20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C‐depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)‐ and (S)‐sec‐butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the l ‐enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec‐butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of aqueous alteration observed over the monoamine concentrations in Orgueil and Murchison, and to evaluate the primordial synthetic relationships between meteoritic monoamines and amino acids.  相似文献   

19.
The Orgueil meteorite has become one of the most well‐studied carbonaceous meteorites, after it fell in France 150 yr ago. Extraterrestrial organic compounds such as amino acids and nucleobases in the parts per billion ranges were identified in Orgueil samples with supporting isotopic analyses. However, speculations of terrestrial contamination such as organic inclusions in the form of microbes and seeds accompanied the analyses of the Orgueil meteorite ever since its fall. By using molecular analysis, we performed DNA extractions and spiking experiments combined with 16S and 18S rRNA gene targeted PCR amplification to quantify the level of terrestrial biocontamination. Our results indicate that terrestrial contamination with DNA was insignificant in the investigated meteorite fraction. We also remeasured and confirmed concentrations of amino acids found in previous studies and conclude that their rather high concentrations and distribution cannot be explained by terrestrial contamination with microorganisms alone. These results represent the first analysis using DNA‐directed tools in the analysis of the Orgueil meteorite to determine trace levels of biomarkers.  相似文献   

20.
Abstract— We present noble gas analyses of sediment‐dispersed extraterrestrial chromite grains recovered from ?470 Myr old sediments from two quarries (Hällekis and Thorsberg) and of relict chromites in a coeval fossil meteorite from the Gullhögen quarry, all located in southern Sweden. Both the sediment‐dispersed grains and the meteorite Gullhögen 001 were generated in the L‐chondrite parent body breakup about 470 Myr ago, which was also the event responsible for the abundant fossil meteorites previously found in the Thorsberg quarry. Trapped solar noble gases in the sediment‐dispersed chromite grains have partly been retained during ?470 Myr of terrestrial residence and despite harsh chemical treatment in the laboratory. This shows that chromite is highly retentive for solar noble gases. The solar noble gases imply that a sizeable fraction of the sediment‐dispersed chromite grains are micrometeorites or fragments thereof rather than remnants of larger meteorites. The grains in the oldest sediment beds were rapidly delivered to Earth likely by direct injection into an orbital resonance in the inner asteroid belt, whereas grains in younger sediments arrived by orbital decay due to Poynting‐Robertson (P‐R) drag. The fossil meteorite Gullhögen 001 has a low cosmic‐ray exposure age of ?0.9 Myr, based on new He and Ne production rates in chromite determined experimentally. This age is comparable to the ages of the fossil meteorites from Thorsberg, providing additional evidence for very rapid transfer times of material after the L‐chondrite parent body breakup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号