首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

2.
Abstract— Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (apparent diameter Da = 3.8 km), the Ries crater (Da = 24 km) in southern Germany, and the moldavite (tektite) strewn field in Bohemia and Moravia (Czech Republic), Lusatia (East Germany), and Lower Austria. The moldavite strewn field extends from ~200 to 450 km from the center of the Ries to the east‐northeast forming a fan with an angle of ~57°. An oblique impact of a binary asteroid from a west‐southwest direction appears to explain the locations of the craters and the formation and distribution of the moldavites. The impactor must have been a binary asteroid with two widely separated components (some 1.5 and 0.15 km in diameter, respectively). We carried out a series of three‐dimensional hydrocode simulations of a Ries‐type impact. The results confirm previous results suggesting that impacts around 30–50° (from the horizontal) are the most favorable angles for near‐surface melting, and, consequently for the formation of tektites. Finally, modeling of the motion of impact‐produced tektite particles through the atmosphere produces, in the downrange direction, a narrow‐angle distribution of the moldavites tektites in a fan like field with an angle of ~75°. An additional result of modeling the motion of melt inside and outside the crater is the preferred flow of melt from the main melt zone of the crystalline basement downrange towards the east‐northeast rim. This explains perfectly the occurrence of coherent impact melt bodies (some tens of meters in size) in a restricted zone of the downrange rim of the Ries crater. The origin of these melt bodies, which represent chemically a mixture of crystalline basement rocks similar to the main melt mass contained (as melt particles <0.5 m in size) in the suevite, do not occur at any other portion of the Ries crater rim and remained enigmatic until now. Although the calculated distribution of moldavites still deviates to some degree from the known distribution, our results represent an important step toward a better understanding of the origin and distribution of the high‐velocity surface melts and the low‐velocity, deep‐seated melt resulting from an oblique impact on a stratified target.  相似文献   

3.
Drill core UNAM‐7, obtained 126 km from the center of the Chicxulub impact structure, outside the crater rim, contains a sequence of 126.2 m suevitic, silicate melt‐rich breccia on top of a silicate melt‐poor breccia with anhydrite megablocks. Total reflection X‐ray fluorescence analysis of altered silicate melt particles of the suevitic breccia shows high concentrations of Br, Sr, Cl, and Cu, which may indicate hydrothermal reaction with sea water. Scanning electron microscopy and energy‐dispersive spectrometry reveal recrystallization of silicate components during annealing by superheated impact melt. At anhydrite clasts, recrystallization is represented by a sequence of comparatively large columnar, euhedral to subhedral anhydrite grains and smaller, polygonal to interlobate grains that progressively annealed deformation features. The presence of voids in anhydrite grains indicates SOx gas release during anhydrite decomposition. The silicate melt‐poor breccia contains carbonate and sulfate particles cemented in a microcrystalline matrix. The matrix is dominated by anhydrite, dolomite, and calcite, with minor celestine and feldspars. Calcite‐dominated inclusions in silicate melt with flow textures between recrystallized anhydrite and silicate melt suggest a former liquid state of these components. Vesicular and spherulitic calcite particles may indicate quenching of carbonate melts in the atmosphere at high cooling rates, and partial decomposition during decompression at postshock conditions. Dolomite particles with a recrystallization sequence of interlobate, polygonal, subhedral to euhedral microstructures may have been formed at a low cooling rate. We conclude that UNAM‐7 provides evidence for solid‐state recrystallization or melting and dissociation of sulfates during the Chicxulub impact event. The lack of anhydrite in the K‐Pg ejecta deposits and rare presence of anhydrite in crater suevites may indicate that sulfates were completely dissociated at high temperature (T > 1465 °C)—whereas ejecta deposited near the outer crater rim experienced postshock conditions that were less effective at dissociation.  相似文献   

4.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

5.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

6.
Abstract– 40Ar/39Ar dating of recrystallized feldspar glass particles separated from clast‐rich impact melt rocks from the approximately 10 km Paasselkä impact structure (SE Finland) yielded a Middle to Late Triassic (Ladinian‐Karnian) pseudo‐plateau age of 228.7 ± 3.0 (3.4) Ma (2σ). This new age makes Paasselkä the first known Triassic impact structure dated by isotopic methods on the Baltic Shield. The new Paasselkä impact age is, within uncertainty, coeval with isotopic ages recently obtained for the Lake Saint Martin impact structure in Canada, indicating a new Middle to Late Triassic impact crater population on Earth. The comparatively small crater size, however, suggests no relationship between the Paasselkä impact and a postulated extinction event at the Middle/Late Triassic boundary.  相似文献   

7.
Abstract— The well‐preserved Kärdla impact crater, on Hiiumaa Island, Estonia, is a 4 km diameter structure formed in a shallow Ordovician sea ?455 Ma ago into a target composed of thin (?150 m) unconsolidated sedimentary layer above a crystalline basement composed of migmatite granites, amphibolites and gneisses. The fractured and crushed amphibolites in the crater area are strongly altered and replaced with secondary chloritic minerals. The most intensive chloritization is found in permeable breccias and heavily shattered basement around and above the central uplift. Alteration is believed to have resulted from convective flow of hydrothermal fluids through the central areas of the crater. Chloritic mineral associations suggest formation temperatures of 100–300 °C, in agreement with the most frequent quartz fluid inclusion homogenization temperatures of 150–300 °C in allochthonous breccia. The rather low salinity of fluids in Kärdla crater (<13 wt% NaCleq) suggests that the hydrothermal system was recharged either by infiltration of meteoric waters from the crater rim walls raised above sea level after the impact, or by invasion of sea water through the disturbed sedimentary cover and fractured crystalline basement. The well‐developed hydrothermal system in Kärdla crater shows that the thermal history of the shock‐heated and uplifted rocks in the central crater area, rather than cooling of impact melt or suevite sheets, controlled the distribution and intensity of the impact‐induced hydrothermal processes.  相似文献   

8.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   

9.
Abstract— The 24 km diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 × 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the south and east of the impact site. To the north and west, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact-melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a postimpact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite therefore has—like the silicate melt—a primary origin by impact-shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites from the southwest to east of the Ries crater. The rarer suevites to the west to northeast of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.  相似文献   

10.
Abstract— The ~400 Ma old Ilyinets impact structure was formed in the Precambrian basement of the Ukrainian Shield and is now mostly covered by Quaternary sediments. Various impact breccias and melts are exposed in its southern section. The crater is a complex structure with a central uplift that is surrounded by an annular deposit of breccias and melt rocks. In the annulus, brecciated basement rocks are overlain by up to 80 m of glass-poor suevitic breccia, which is overlain (and partly intercalated) by glass-rich suevite with a thickness of up to 130 m. Impact-melt rocks occur within and on top of the suevites—in some cases in the form of devitrified bomb-shaped impact-glass fragments. We have studied the petrographic and geochemical characteristics of 31, mostly shocked, target rock samples (granites, gneisses, and one amphibolite) obtained from drill cores within the structure, and impact breccias and melt rock samples from drill cores and surface exposures. Multiple sets of planar deformation features (PDFs) are common in quartz, potassium feldspar, and plagioclase of the shocked target rocks. The breccias comprise more or less devitrified impact melt with shocked clasts. The impact-melt rocks (“bombs”) show abundant vesicles and, in some cases, glass is still present as brownish patches and schlieren. All impact breccias (including the melt rocks) are strongly altered and have significantly elevated K contents and lower Na contents than the target rocks. The alteration could have occurred in an impact-induced hydrothermal system. The bomb-shaped melt rocks have lower Mg and Ca contents than other rock types at the crater. Compared to target rocks, only minor enrichments of siderophile element contents (e.g., Ni, Co, Ir) in impact-melt rocks were found.  相似文献   

11.
Abstract— The suevite breccia of the Chicxulub impact crater, Yucatàn, Mexico, is more variable and complex in terms of composition and stratigraphy than suevites observed at other craters. Detailed studies (microscope, electron microprobe, SEM, XRF) have been carried out on a noncontinuous set of samples from the drill hole Yucatàn 6 (Y6) located 50 km SW from the center of the impact structure. Three subunits can be distinguished in the suevite: the upper unit is a fine‐grained carbonate‐rich suevite breccia with few shocked basement clasts, mostly altered melt fragments, and formerly melted carbonate material; the middle suevite is a coarse‐grained suevite with shocked basement clasts and altered silicate melt fragments; the lower suevite unit is composed of shocked basement and melt fragments and large evaporite clasts. The matrix of the suevite is not clastic but recrystallized and composed mainly of feldspar and pyroxene. The composition of the upper members of the suevite is dominated by the sedimentary cover of the Yucatàn target rock. With depth in well Y6, the amount of carbonate decreases and the proportion of evaporite and silicate basement rocks increases significantly. Even at the thin section scale, melt phases of different chemistry can be identified, showing that no widespread homogenization of the melt took place. The melt compositions also reflect the heterogeneity of the deep Yucatàn basement. Calcite with characteristic feathery texture indicates the existence of formerly pure carbonate melt. The proportion of carbonate to evaporite clasts is less than 5:1, except in the lower suevite where large evaporite clasts are present. This proportion constrains the amount of CO2 and SOX released by the impact event.  相似文献   

12.
Abstract— Approximately 100 m of impactites were retrieved from the ICDP borehole Yaxcopoil‐1 (Yax‐1), located ~60 km south‐southwest from the center of the Chicxulub impact crater on the Yucatán Peninsula of Mexico. Here, we characterize and discuss this impact breccia interval according to its geochemical characteristics. Chemical analysis of samples from all five recognized breccia units reveals that the impactites are of heterogeneous composition with regard to both major and trace elements at the single sample (8–16 cm3) scale. This is primarily due to a strong mixing relationship between carbonate and silicate fractions. However, averaged compositions for suevitic units 1 to 3 are similar, and the silicate fraction (after removal of the carbonate component) indicates thorough mixing and homogenization. Analysis of the green melt breccia horizon, unit 4, indicates that it contains a distinct mafic component. Large brown melt particles (in units 2, 3, and 4) represent a mixture of feldspathic and mafic components, with high CaO abundances. Unit 5 shows the greatest compositional diversity, with highly variable abundances of SiO2, CaO, and MgO. Inter‐sample heterogeneity is the result of small sample size combined with inherent heterogeneous lithological compositions, highly variable particle size of melt and lithic components, and post‐depositional alteration. In contrast to samples from the Y6 borehole from closer to the center of the structure, Yax‐1 impactites have a strong carbonate component. Elevated loss on ignition, Rb, and Cs contents in the upper two impactite units indicate strong interaction with seawater. The contents of the siderophile elements, including Ni, Co, Ir, and Cr, do not indicate the presence of a significant extraterrestrial component in the Yax‐1 impactites.  相似文献   

13.
The circa 14 km diameter Pantasma circular structure in Oligocene volcanic rocks in Nicaragua is here studied for the first time to understand its origin. Geomorphology, field mapping, and petrographic and geochemical investigations all are consistent with an impact origin for the Pantasma structure. Observations supporting an impact origin include outward‐dipping volcanic flows, the presence of former melt‐bearing polymict breccia, impact glass (with lechatelierite and low H2O, <300 ppm), and also a possible ejecta layer containing Paleozoic rocks which originated from hundreds of meters below the surface. Diagnostic evidence for impact is provided by detection in impact glass of the former presence of reidite in granular zircon as well as coesite, and extraterrestrial ε54Cr value in polymict breccia. Two 40Ar/39Ar plateau ages with a combined weighted mean age of 815 ± 11 ka (2 σ; P = 0.17) were obtained on impact glass. This age is consistent with geomorphological data and erosion modeling, which all suggest a rather young crater. Pantasma is only the fourth exposed crater >10 km found in the Americas south of N30 latitude, and provides further evidence that a significant number of impact craters may remain to be discovered in Central and South America.  相似文献   

14.
Abstract— We present major and trace element data as well as petrographic observations for impactites (suevitic groundmass, bulk suevite, and melt rock particles) and target lithologies, including Cretaceous anhydrite, dolomite, argillaceous limestone, and oil shale, from the Yaxcopoil‐1 borehole, Chixculub impact structure. The suevitic groundmass and bulk suevite have similar compositions, largely representing mixtures of carbonate and silicate components. The latter are dominated by melt rock particles. Trace element data indicate that dolomitic rocks represented a significant target component that became incorporated into the suevites; in contrast, major elements indicate a strong calcitic component in the impactites. The siliceous end‐member requires a mafic component in order to explain the low SiO2 content. Multicomponent mixing of various target rocks, the high alteration state, and dilution by carbonate complicate the determination of primary melt particle compositions. However, two overlapping compositional groups can be discerned—a high‐Ba, low‐Ta group and a high‐Fe, high‐Zn, and high‐Hf group. Cretaceous dolomitic rocks, argillaceous limestone, and shale are typically enriched in U, As, Br, and Sb, whereas anhydrite contains high Sr contents. The oil shale samples have abundances that are similar to the North American Shale Composite (NASC), but with a comparatively high U content. Clastic sedimentary rocks are characterized by relatively high Th, Hf, Zr, As, and Sb abundances. Petrographic observations indicate that the Cretaceous rocks in the Yaxcopoil‐1 drill core likely register a multistage deformation history that spans the period from pre‐ to post‐impact. Contrary to previous studies that claimed evidence for the presence of impact melt breccia injection veins, we have found no evidence in our samples from a depth of 1347–1348 m for the presence of melt breccia. We favor that clastic veinlets occur in a sheared and altered zone that underwent intense diagenetic overprint prior to the impact event.  相似文献   

15.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   

16.
Abstract— Seismic reflection data and an at least 350 m thick, PGE‐rich carbonate breccia lens intersected by the Fohn‐1 exploration well in the Timor Sea off northern Australia, are interpreted in terms of a buried 4.8 km‐diameter impact crater of late Eocene to pre‐Miocene age. The crater displays the classic elements of impact structures, including a central uplift, ring syncline, and upraised rims. The presence in the breccia of redeposited Campanian and Maastrichtian microfossils suggests rebound of strata from levels deeper than 1250 m below the pre‐Miocene unconformity. Morphometric modelling suggests an original crater at least 1400 m deep, which is consistent with the excavation of Cretaceous strata. Stratigraphic and palaeontological evidence suggests that the impact occurred between 36 and 24.6 Ma. The breccia contains a pseudotachylite component enriched in the inert Pt group elements (PGE) (Ir, Ru) by factors of 5–12 above the values of common sediments. The more mobile PGE (Os, Pt, Pd) show a wide scatter and terrestrial‐type values. Opposite geochemical/stratigraphic trends pertain to different PGE species—the relatively inert Ir‐Ru group shows an overall concentration at the base of the section, whereas the more mobile Os shows peaks at median levels of the section—suggesting upward diagenetic leaching. The near‐chondritic PGE patterns at the base of the breccia pile are accompanied by near‐chondritic Ni/Cr, Co/Cr, Ni/Ir, Ni/Pt, and Cu/Pd ratios. Departure from these values related to alteration at higher levels in the breccia pile is accompanied with high S levels (~1%).  相似文献   

17.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   

18.
Fluid inclusions studies in quartz and calcite in samples from the ICDP‐Chicxulub drill core Yaxcopoil‐1 (Yax‐1) have revealed compelling evidence for impact‐induced hydrothermal alteration. Fluid circulation through the melt breccia and the underlying sedimentary rocks was not homogeneous in time and space. The formation of euhedral quartz crystals in vugs hosted by Cretaceous limestones is related to the migration of hot (>200 °C), highly saline, metal‐rich, hydrocarbon‐bearing brines. Hydrocarbons present in some inclusions in quartz are assumed to derive from cracking of pre‐impact organic matter. The center of the crater is assumed to be the source of the hot quartz‐forming brines. Fluid inclusions in abundant newly‐formed calcite indicate lower cyrstallization temperatures (75–100 °C). Calcite crystallization is likely related to a later stage of hydrothermal alteration. Calcite precipitated from saline fluids, most probably from formation water. Carbon and oxygen isotope compositions and REE distributions in calcites and carbonate host rocks suggest that the calcite‐forming fluids have achieved close equilibrium conditions with the Cretaceous limestones. The precipitation of calcite may be related to the convection of local pore fluids, possibly triggered by impact‐induced conductive heating of the sediments.  相似文献   

19.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号