首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以饱和度与有效应力为状态变量,通过引入描述不饱和与饱和土孔隙比差的状态变量,将Zhang等提出的饱和土体应力诱导各向异性动弹塑性本构模型推广到不饱和土体中,使其可描述不饱和土在动力循环荷载作用下的力学特性行为。通过对已有不饱和土体在完全不排水条件下的动三轴试验进行理论模拟,验证了所提出不饱和土本构模型的正确性。最后基于所提出本构模型,讨论了在不排水条件下初始饱和度对不饱和土动力特性研究。结果表明,不饱和土在动力荷载作用下,土体的孔隙比将减少,导致饱和度增加;当初始饱和度较高时,不饱和土会转化为饱和土,从而发生液化现象。该研究成果对研究不饱和土在地震等动力荷载作用下的力学特性行为具有重要意义。  相似文献   

2.
饱和土体再固结变形特性若干问题研究   总被引:2,自引:0,他引:2  
白冰 《岩土力学》2003,24(5):691-695
重点考察了冲击能大小、周围压力、土性对再固结变形规律的影响,对一种砂粘混合体土料制备的扰动土样进行了试验研究。这对于了解强夯冲击荷载作用下,不同土类地基的性状及其加固效果有重要意义。此外,还研究了饱和粘性土的扰动固结问题、临界孔隙水压力问题,并对不同排水条件下土体的次固结变形问题进行了讨论。  相似文献   

3.
强夯荷载作用瞬间饱和土层固结变形计算   总被引:11,自引:3,他引:8  
白冰 《岩土力学》2003,24(1):57-60
在已有强夯荷载作用下饱和土层内孔隙水压力分布理论研究成果的基础上,提出了一个预估强夯荷载作用瞬间由于孔隙水压力消散所引起的饱和土层固结变形量的计算方法;讨论了固结系数、卸荷固结比等土性参数对强夯冲击荷载作用下固结变形量大小的影响,进一步解释了强夯法加固饱和土层的机理。  相似文献   

4.
强夯时地基土的应力场分布特征及应用   总被引:19,自引:6,他引:13  
孔令伟  袁建新 《岩土力学》1999,20(3):13-19,23
在前期研究工作的基础上,利用积分变换技术和传递矩阵法对强夯时地基土的应力场分布特征进行了数值模拟,并和前人的数值分析与室内外试验结果进行了对比分析,结果表明:所得的动应力衰减规律与实测结果较为吻合。在动荷载作用下,地基土动应力衰减率比强夯冲击荷载作用下的衰减率快,强夯冲击荷载作用下的最大动应力等值线图可作为估算强夯的有效加固深度和加固范围时参考。  相似文献   

5.
王威  王建华 《岩土力学》2015,36(Z1):315-319
为了掌握高能级强夯作用下土体的变形特性,在LS-DYNA的框架内,采用非线性大变形显示有限元算法和“帽子”本构模型,计算了强夯作用下地基土体的变形。首先,根据现场施工的实际情况建立了有限元基本模型,并与实际的监测数据进行比较,其计算结果与测试结果基本一致,该模型能较好地反映出土体的隆起和侧向位移特点。其次,以该基本模型和夯坑的变形为考察对象进行参数分析,研究了不同能级、同能级不同动量以及夯锤与地基土间的水平摩擦力对土体变形的影响。结果表明,高能级强夯作用下夯锤与地基土间的水平力是不可忽略;夯锤与地基土之间的摩擦力,对夯坑侧向的土体位移和地表的隆起有明显的影响  相似文献   

6.
《岩土力学》2017,(8):2157-2166
在川西地区,由砂砾石与黏土颗粒构成的混合土路基经常会发生沉降变形问题。对于交通荷载作用下土体中的累积变形,可通过建立循环荷载作用下的动本构模型进行描述。在边界面弹塑性理论的框架内,综合考虑崩坡积混合土非饱和状态和细颗粒含量两大主要影响因素,结合能比较真实描述非饱和土体湿陷性能的LC(loading-collapse)屈服曲线,同时基于可移动映射中心的映射准则,采用经典的修正剑桥模型作为塑性势方程,构建了混合土的非饱和动本构模型,其参数可通过拟合或常规试验获得。通过与试验结果进行对比,该模型不仅可以较好地反映非饱和混合土在静载和循环荷载下的力学特性,而且能够真实地预测土体在加、卸载过程中的滞回特性。其结果可为川西混合土路基沉降变形预测提供理论依据。  相似文献   

7.
淤泥质软土在冲击荷载作用下孔压增长模式   总被引:8,自引:0,他引:8  
孟庆山  汪稔  陈震 《岩土力学》2004,25(7):1017-1022
通过室内淤泥质饱和软粘土的动力固结试验,考虑不同锤重和落距组合情况,对冲击荷载作用下饱和软粘土孔隙水压力的动态响应特征进行分析。试验结果表明,孔隙水压力和冲击击数之间是双曲线对应关系,高围压下冲击荷载激发的孔压随击数增长的速率快,超固结软土在冲击过程中孔压出现了负值。冲击荷载对土体产生的附加应力能导致孔压上升,孔压消散使得土体内有效应力增加,强度提高。对强夯施工中以孔压控制施工质量具有指导性意义。  相似文献   

8.
通过室内试验就中海石油炼化山东公司东营港(堆场区)场地的土性条件和加固前、加固后的变形和强度特征的变化进行了比较。此外,根据3个场地的现场实测资料的比较,分析了不同地层条件下强夯荷载作用引起的孔隙水压力的分布特征,最后研究强夯法加固饱和土地基的土性适用条件。  相似文献   

9.
以吹填砂为覆盖层的饱和软粘土地基强夯试验研究   总被引:1,自引:0,他引:1  
胡修文  张唯  王坚 《岩土力学》2004,25(5):818-823
针对某港区工程陆域不同区域的地质条件和工程荷载,进行了不同工艺的强夯试验,对夯坑周围地表变形、土体水平位移以及孔压的增长和消散进行了观测,并对强夯加固效果进行了试验研究。研究表明,采用强夯法加固以吹填砂为覆盖层的饱和软土地基是可行的,有效加固深度可达到6 ~7 m,吹填砂层厚度对有效夯击率和碎石土垫层的作用有显著影响。由于吹填砂层和淤泥质粘土层中的粉细砂薄层有利于孔隙水压力的消散,用强夯法处理该类地基时,如果设计加固深度较小时,可以不设置竖向排水体。通过对试验数据的分析研究,获得强夯法加固该类地基土的最佳强夯参数和施工工艺,并且认为选择强夯施工工艺应考虑吹填砂层厚度。  相似文献   

10.
冲击荷载下饱和软土动态响应特征的试验研究   总被引:1,自引:0,他引:1  
孟庆山  汪稔 《岩土力学》2005,26(1):17-21
基于现场动力排水固结法加固饱和软土地基工程实践和室内动力固结试验,结合土体压力分析了饱和软粘土在冲击荷载作用下的变形与孔压的发展变化规律。研究表明:冲击荷载引起土体变形和激发的孔压具有不同发展模式,土体变形与冲击击数是对数双曲线关系,而孔压与冲击击数之间仅是双曲线关系。  相似文献   

11.
饱合土的强夯模拟试验   总被引:7,自引:0,他引:7  
用MTS 810Teststar程控伺服土动三轴试验机,对饱合土强夯加固地基的全过程进行高精度模拟,获得饱合土在强夯作用下的动应力,动位移,孔隙水压力的变化规律及强夯的应力-应变关系特征,在一定程度上揭示了强夯机理。  相似文献   

12.
预排水动力固结法处理吹填粉土地基的试验研究   总被引:1,自引:0,他引:1  
为加固新近吹填的处于流塑状态的粉土地基,首先采用轻型井点降水和动力碾压的方法使地基具有一定的初始承载力。然后,施加较大的强夯动力荷载,从而使地基承载力得到显著提高。这一新的综合加固技术称之为预排水动力固结法。通过现场测试,研究了施工过程中诸如井点降水的影响范围、强夯时孔隙水压力的变化范围、深层沉降的变化等问题。同时,对强夯夯击遍数、每点夯击次数、遍与遍之间的间隙时间等有关问题进行讨论。研究表明,预排水动力固结法可显著提高吹填粉土地基的承载力。  相似文献   

13.
田水  王钊 《工程地质学报》2006,14(5):694-698
根据强夯的特点,采用同时考虑几何非线性、材料非线性、状态非线性,并且考虑瞬态大变形的非线性动态显式有限元,分析了强夯对地基土的冲击碰撞过程。该方法克服了以往有限元计算强夯动力问题时需再引入其他的简化假定的已知量,能较实际地反映强夯加固的动力特性。通过对工程实例计算研究,取得了令人满意的效果。  相似文献   

14.
杨高升  白冰  姚晓亮 《岩土力学》2020,41(3):1010-1018
为了研究高含冰量冻土路基的融化固结规律,在线性大变形融化固结理论的基础上引入非线性本构关系,并运用分段插值法实现了孔隙比与压缩模量之间的非线性关系,完善了三维大变形融化固结数值模拟方法。在此基础上结合青藏公路实测数据验证了其合理性。研究结果表明,采用非线性应力?应变关系的大变形融化固结理论能够显著提高高含冰量冻土路基的沉降计算精度,并能够进一步合理描述热学场和力学场的相互叠加影响。冻土融化固结度受有效融化固结时间以及特征排水长度等因素的影响呈现出完全不同于融土路基的发展规律,即在路基运营初期其融化固结度上升,随着时间发展,其固结度在达到峰值后持续降低,这主要是由于融化深度持续增大后所引起的特征排水长度的增加和有效融化固结时间的缩短所造成的。因此,在计算高含冰量冻土路基稳定性设计指标时,应采用非线性应力?应变关系来进一步提高融化深度、沉降以及固结度等指标的计算精度。  相似文献   

15.
李彰明  刘俊雄 《岩土力学》2014,299(2):339-345
以往动力排水固结室内试验,通常冲击能量不够,很难激发软土某些工程响应,对应加固机制难以发现。通过可提供高冲击能的多向高能高速电磁力冲击智能控制试验系统,针对淤泥类超软土进行静动力排水固结模型试验,获得了淤泥孔压等响应特征:夯击瞬间(6 ms)上部孔压增长及下降时间非常短,且其重复性好;初始两遍夯击结束后中部孔压变化呈双峰型,其时间间隔随着夯击遍数增加而逐渐变大,最后不复存在;每遍夯击瞬时中部土压均出现急剧增长与快速减小,增长幅度随夯击遍数增加呈减小趋势,但每遍夯完后数天内土压值均大于夯前值;每遍夯击孔压消散后最终值都小于初始孔压,说明在一定的排水条件下,淤泥这类超软土地基确实可夯击;夯击后残余应力作用机制存在,且其对沉降起主要作用,而一定静力荷载的这种机制不明显;排水板插设扰动效应不可忽视,但该扰动效应随软土埋深增大而减少。  相似文献   

16.
张唯  王坚 《地质科技情报》2003,22(3):105-108
通过某码头工程典型试验区进行的强夯试验,研究了在单点夯试验过程中夯沉量与夯击次数的关系、地基土水平位移和深度的关系、夯击次数与孔隙水压力的关系及孔隙水压力增长与消散和时间的关系;在试验块强夯后,进行了静载试验、静力触探试验和钻孔取土室内土工试验。通过对强夯前后进行对比,得到了强夯法加固吹填砂地基的效果,提出了合理的强夯施工参数和控制工艺,并得出了一些有益的结论。  相似文献   

17.
郭帅杰  王保田  张福海 《岩土力学》2013,34(10):3003-3010
沉积形成的水底黏性泥砂自重固结过程表现出显著非线性大变形固结特征,应采用大变形固结理论进行泥砂沉积固结计算。基于软黏土一维非线性大应变固结理论,应用有效应力、渗透系数与孔隙比间扩展幂次函数固结本构关系,由达西定律、有效应力原理、连续介质方程等建立大变形固结控制方程,根据固结单元孔隙水渗流、单元变形与泥砂沉积层固结沉降耦合关系形成黏性泥砂大变形自重固结数值模型。泥砂自重作为固结荷载,数值模型假定沉积泥砂各向同性且固结沉降应变、孔隙水渗流仅发生于竖直方向,为一维单向沉积固结过程;采用泥砂沉降柱试验确定泥砂非线性扩展幂次函数关系参数。模型应用中,划分竖向固结单元,由沉积泥砂固结本构关系确定各固结单元有效应力及超孔隙水应力,通过超孔隙水应力时间维度上的消散过程及各固结参数间的耦合关系计算泥砂固结沉降。数值模型计算结果表明,沉积黏性泥砂自重固结初期表现为有效应力调整过程,初始有效应力与孔隙比根据固结本构关系匹配调整为扩展幂次函数关系;沉积泥砂应变与应力固结度存在20%左右误差,泥砂固结沉降发展快于超孔隙水应力消散过程,证明沉积泥砂固结沉降变形的发展与超孔隙水应力消散并非同步耦合。计算模型应用于室内沉降柱试验模拟淤积黏性泥砂自重固结沉降预测中,模型输出与试验结果符合良好。  相似文献   

18.
软土固结系数刍议   总被引:1,自引:1,他引:0  
在土的固结分析中,要正确估算土体中超静孔隙水压力的消散与沉降过程,重要的是确定可靠的固结系数Cv值.通过在天仙一级公路软弱地基路基工程沿线选择的二个试验场地上开展原位试验及室内试验,并结合珠江口某海区软土的固结试验数据,研究软土固结系数的规律,探讨其确定方法.研究表明:(1)由原位孔隙水压力消散试验得到的固结系数Cv值比室内高压固结试验时间平方根法所得到的相应值大一个数量级;(2)由室内高压固结试验时间平方根法所得到的固结系数Cv值大于时间对数法、反弯点法、三点法及司各脱法所得到的Cv值.(3)由于反弯点法、三点法及司各脱法确定固结系数Cv值有其各自的优点,在实际工程中均值得去尝试和推广.  相似文献   

19.
动弹模量与阻尼比是土动力学分析中的重要力学参数,考虑重载铁路荷载特征定量分析水泥改良膨胀土的动模量和阻尼比的较少。依托蒙西至华中地区铁路煤运通道(简称蒙-华铁路)工程为背景,采用南阳邓州市大山寨膨胀土,通过在不同频率、围压、固结比及动应力幅值下的持续振动三轴试验,研究了水泥掺量3%和5%水泥改良膨胀土的动弹模量及阻尼比,并与膨胀土素土进行对比分析。结果表明:水泥掺量3%和5%改良膨胀土的最大动弹模量约为膨胀土素土的3~4倍;在动弹模量-应变曲线中,动应变小于0. 002时表现为陡降段,动弹模量随动应变增长降幅达70%,而动应变大于0. 002时降幅较小,动弹模量随动应变增长趋于稳定;动弹模量随围压、频率、水泥掺量增加而增大,阻尼比随围压、固结比增加而减小;低应变水平下,固结比与动模量成正相关关系,高应变水平下,固结比与动弹模量成负相关关系。同时,对动弹模量及阻尼比进行了归一化分析,建立了估算动弹模量及阻尼比的经验公式。  相似文献   

20.
动力模型试验已经广泛应用于土与结构相互作用的研究中,其中模型土的配制尤为重要。根据所选土样的基本物理力学性质,制作了不同干密度、含水率的环刀试样,通过直接剪切试验,得到了不同试样的初始剪切模量。在试验的基础上,探讨了初始剪切模量与试样干密度、含水率之间的关系。基于动力模型试验的相似关系得到了模型土配制的基本要求,结合探讨结果分析了不添加其他材料的模型土配制,得到定性的模型土配制方法,结果可为以后类似试验的模型土配制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号