首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as “oil prone” and “gas prone” carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (∼30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ∼30 carbons, and of ∼20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters.  相似文献   

2.
Relaxation of 13C nuclei in a peat, a soil, and three soil fractions have been investigated in order to improve structural resolution and to investigate quantification of various carbon types. Rotating frame spin lattice relaxation times (T1?'s) and transverse relaxation times (T2′'s) are similar to those observed for coals. T2′'s of carbons in different magnetic environments differ sufficiently that spectra can be obtained containing only nonprotonated carbon and methyl substituents if a 40 μsec delay without decoupling is inserted into the pulse programme before data acquisition (dipolar dephasing). Provided quantitative data is obtained in simple cross polarization experiments and allowance is made for loss in signal intensity of nonprotonated carbon during dipolar dephasing, then the fraction of aromatic carbon which is protonated in the samples can be determined.  相似文献   

3.
Gas adsorption isotherms of Akabira coals were established for pure carbon dioxide (CO2), methane (CH4), and nitrogen (N2). Experimental data fit well into the Langmuir model. The ratio of sorption capacity of CO2, CH4, and N2 is 8.5:3.5:1 at a lower pressure (1.2 MPa) regime and becomes 5.5:2:1 when gas pressure increases to 6.0 MPa. The difference in sorption capacity of these three gases is explained by differences in the density of the three gases with increasing pressure. A coal–methane system partially saturated with CH4 at 2.4 MPa adsorption pressure was experimentally studied. Desorption behavior of CH4 by injecting pure CO2 (at 3.0, 4.0, 5.0, and 6.0 MPa), and by injecting the CO2–N2 mixture and pure N2 (at 3.0 and 6.0 MPa) were evaluated. Results indicate that the preferential sorption property of coal for CO2 is significantly higher than that for CH4 or N2. CO2 injection can displace almost all of the CH4 adsorbed on coal. When modeling the CH4–CO2 binary and CH2–CO2–N2 ternary adsorption system by using the extended Langmuir (EL) equation, the EL model always over-predicted the sorbed CO2 value with a lower error, while under-predicting the sorbed CH4 with a higher error. A part of CO2 may dissolve into the solid organic structure of coal, besides its competitive adsorption with other gases. According to this explanation, the EL coefficients of CO2 in EL equation were revised. The revised EL model proved to be very accurate in predicting sorbed ratio of multi-component gases on coals.  相似文献   

4.
For the degassing of coal seams, either prior to mining or in un-minable seams to obtain coalbed methane, it is the combination of cleat frequency, aperture, connectivity, stress, and mineral occlusions that control permeability. Unfortunately, many potential coalbeds have limited permeability and are thus marginal for economic methane extraction. Enhanced coalbed methane production, with concurrent CO2 sequestration is also challenging due to limited CO2 injectivity. Microwave energy can, in the absence of confining stress, induce fractures in coal. Here, creation of new fractures and increasing existing cleat apertures via short burst, high-energy microwave energy was evaluated for an isotropically stressed and an unstressed bituminous coal core. A microwave-transparent argon gas pressurized (1000 psi) polycarbonate vessel was constructed to apply isotropic stress simulating ~ 1800 foot depth. Cleat frequency and distribution was determined for the two cores via micro-focused X-ray computed tomography. Evaluation occurred before and after microwave exposure with and without the application of isotropic stress during exposure. Optical microscopy was performed for tomography cleat aperture calibration and also to examine lithotypes influences on fracture: initiation, propagation, frequency, and orientation. It was confirmed that new fractures are induced via high-energy microwave exposure in an unconfined bituminous core and that the aperture increased in existing cleats. Cleat/fracture volume, following microwave exposure increased from 1.8% to 16.1% of the unconfined core volume. For the first time, similar observations of fracture generation and aperture enhancement in coal were also determined for microwave exposure under isotropic stress conditions. An existing cleat aperture, determined from calibrated X-ray computed tomography increased from 0.17 mm to 0.32 mm. The cleat/fracture volume increased from 0.5% to 5.5%. Optical microscopy indicated that fracture initiated likely occurred in at least some cases at fusain microlithotypes. Presumably this was due to the open pore volumes and potential for bulk water presence or steam pressure buildup in these locations. For the major induced fractures, they were mostly horizontal (parallel to the bedding plane) and often contained within lithotype bands. Thus it appears likely that microwaves have the potential to enhance the communication between horizontal wellbore and existing cleat network, in coal seams at depth, for improved gas recovery or CO2 injection.  相似文献   

5.
通过高压釜在溶剂和催化剂条件下对煤的加氢液化试验,探讨了低煤级煤中煤岩组分的液化性能。结果表明,在不同宏观煤岩成分的液化试验中,转化率和油产率表现出镜煤>亮煤>暗煤>丝炭;对于显微组分的液化,不仅镜质组和壳质组具有反应活性,半镜质组也有一定活性,且活性组分(镜质组+半镜质组+壳质组)含量与液化转化率、油产率表现出良好的正比关系。低煤级煤中,Rmax<1.50%的半丝质组分在液化时有反应活性,其活性低于同一煤中的半镜质组,而Rmax>1.50%的惰质组分已不具反应活性。   相似文献   

6.
Gilsonite, a naturally occurring asphaltite bitumen, consists of a complex mixture of organic compounds. In the present study, advanced one and two dimensional solid state and solution 1H, 13C and 15N nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were employed to investigate its composition and structure. 13C NMR yielded a carbon aromaticity of 27%. Aromatic moieties in gilsonite were primarily single rings or small clusters of fused rings. Half of the aromatic carbons of gilsonite can be accounted for by pyrroles. 15N and 13C cross polarization-magic angle spinning (CP-MAS) NMR showed that most nitrogen in gilsonite was pyrrolic. The aromatic rings were heavily substituted with alkyl chains, as evidenced by 1H13C correlation spectra. Advanced solid state NMR spectral editing techniques clearly identified specific functional groups such as CCH3, CCH2, and CCH2 (exomethylene). 1H13C wideline separation (WISE) NMR helped identify mobile and non-protonated alkyl carbons. FT-ICR-MS indicated that ∼64% of calculated formulae generated by ESI were aliphatic, while only about 0.8–2.5% of formulae contained possible aromatic rings. All of the assigned formulae contained at least one heteroatom (N, O or S), indicating that ionization by ESI was selective for the polar fraction of gilsonite and potentially less reflective of the overall chemical character of gilsonite than NMR spectroscopy. By combining the information obtained from advanced NMR and ultrahigh resolution MS we propose a structural model for gilsonite as a mixture of many pyrrolic and a few fused aromatic rings highly substituted with and connected by mobile aliphatic chains.  相似文献   

7.
Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45–150 µm, 1–2 mm, and 5–10 mm) of crushed coal were performed at 40 °C and 35 °C over a pressure range of 1.4–6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45–150 μm size fraction compared to the two coarser fractions.  相似文献   

8.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

9.
Presently many research projects focus on the reduction of anthropogenic CO2 emissions. It is intended to apply underground storage techniques such as flue gas injection in unminable coal seams. In this context, an experimental study has been performed on the adsorption of pure CO2 and preferential sorption behavior of flue gas. A coal sample from the Silesian Basin in Poland (0.68% V Rr), measured in the dry and wet state at 353 K has been chosen for this approach. The flue gas used was a custom class industrial flue gas with 10.9% of CO2, 0.01% of CO, 9% of H2, 3.01% of CH4, 3.0% of O2, 0.106% of SO2 and nitrogen as balance.Adsorption isotherms of CO2 and flue gas were measured upto a maximum of 11 MPa using a volumetric method. Total excess sorption capacities for CO2 on dry and wet Silesia coal ranged between 1.9 and 1.3 mmol/g, respectively. Flue gas sorption capacities on dry and wet Silesia coal were much lower and ranged between 0.45 and 0.2 mmol/g, respectively, at pressures of 8 MPa. The low sorption capacity of wet coal has resulted from water occupying some of the more active adsorption sites and hence reducing the heterogeneity of adsorption sites relative to that of dry coal. Desorption tests with flue gas were conducted to study the degree of preferential sorption of the individual components. These experiments indicate that CO2 is by far the prefered sorbing component under both wet and dry conditions. This is followed by CH4. N2 adsorbs very little on the coal in the presence of CO2 and CH4. It is also observed that the adsorption of CO2 onto coal is not significantly hindered by the addition of other gases, other than dilution effect of the pressure.In addition to the sorption experiments, the density of the flue gas mixture has been determined up to 18 MPa at 318 K. A very good precision of these measurements were documented by volumetric methods.  相似文献   

10.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

11.
宏观煤岩类型差异是影响煤层气吸附/解吸特征及煤层气井产能的重要因素之一。针对保德区块BX-2井8+9号煤4种不同宏观煤岩类型样品,开展工业分析、显微组分、润湿性及等温吸附/解吸实验研究,探讨了煤岩类型对煤层气吸附/解吸特征的影响及其机制。结果表明:暗淡煤、半暗煤、半亮煤和光亮煤的镜质组含量逐渐增大,水分和灰分含量逐渐降低,亲水性逐渐减弱,Langmuir体积逐渐增大;光亮煤和半亮煤具有更强的吸附能力,同时具有更高的启动压力、转折压力和敏感压力,解吸过程中对应的有效阶段区间宽度更大,更有利于煤层气开发。宏观煤岩类型对吸附/解吸特征的影响机制主要体现在不同煤岩类型煤组分和润湿性的差异。基于宏观煤岩类型分层厚度占比参数,对BX-2井解吸特征参数进行了加权平均计算,并将该井煤层气解吸阶段划分为缓慢解吸、快速解吸和敏感解吸3个阶段,将排采阶段划分为排水降压、不稳定产气、稳定产气和产气衰减4个阶段。排水降压阶段应控制排水速度,减少应力敏感效应对渗透性的伤害;不稳定产气阶段应适当控制套压,尽量扩大解吸半径;稳定产气和产气衰减阶段应适当增大生产压差,利用解吸效率高的优势延长产气高峰期和稳产期。   相似文献   

12.
Interpretation of carbon dioxide diffusion behavior in coals   总被引:3,自引:1,他引:3  
Storage of carbon dioxide in geological formations is for many countries one of the options to reduce greenhouse gas emissions and thus to satisfy the Kyoto agreements. The CO2 storage in unminable coal seams has the advantage that it stores CO2 emissions from industrial processes and can be used to enhance coalbed methane recovery (CO2-ECBM). For this purpose, the storage capacity of coal is an important reservoir parameter. While the amount of CO2 sorption data on various natural coals has increased in recent years, only few measurements have been performed to estimate the rate of CO2 sorption under reservoir conditions. An understanding of gas transport is crucial for processes associated with CO2 injection, storage and enhanced coalbed methane (ECBM) production.A volumetric experimental set-up has been used to determine the rate of sorption of carbon dioxide in coal particles at various pressures and various grain size fractions. The pressure history during each pressure step was measured. The measurements are interpreted in terms of temperature relaxation and transport/sorption processes within the coal particles. The characteristic times of sorption increase with increasing pressure. No clear dependence of the characteristic time with respect to the particle size was found. At low pressures (below 1 MPa) fast gas diffusion is the prevailing mechanism for sorption, whereas at higher pressures, the slow diffusion process controls the gas uptake by the coal.  相似文献   

13.
In this work 3-[2-(2-aminoethylamino)ethylamino]propyl trimethoxysilane (TRI) was employed to functionalize MWCNT containing hydroxyl groups (OH-MWCNT), and the XRD, FTIR, TGA and CHNS elemental analysis techniques were used to characterize the resulted adsorbents. The characterization results for amine-MWCNT showed amine groups effectively attached to the surface of the MWCNT. The equilibrium adsorption capacity of pure CO2 and CH4 and their binary mixture on the pristine MWCNT, OH-MWCNT and amine-MWCNT was measured through a set of equilibrium adsorption experiments at 303.2 and 318.2 K. Capacities of all three types of adsorbents for CO2 adsorption were higher than those for methane adsorption. Also, amine-MWCNT demonstrated better performance on CO2 adsorption than the other two adsorbents, especially at low partial pressures. The capacity of amine-MWCNT for pure CO2 adsorption was 2.5 and 4 times as much as those for pristine MWCNT and OH-MWCNT, respectively, at the temperature of 303.2 K and the pressure of 0.2 bar. The binary adsorption experiment revealed that CO2/CH4 selectivity for pristine MWCNT and amine-MWCNT in all molar fractions of CO2 is about 1.77 and 7, respectively.  相似文献   

14.
Several lignite samples were collected from boreholes of the Amynteo opencast lignite mine, northern Greece. Organic geochemical characteristics were investigated with the help of various analytical techniques, comprising Gas Chromatography (GC) and Gas-chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared Spectroscopy (FTIR), solid-state Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy, petrographical measurements as well as determination of bulk parameters. In the low rank (Rr = 0.21%) Amynteo lignites, huminite is the most abundant maceral group, inertinite has relatively low percentages and liptinite concentrations are rather high. Carbon Preference Index (CPI) reveals the predominance of odd-numbered, long-chained aliphatic hydro-carbons, which is related to a higher terrestrial plant input. The Pr/Ph ratio suggests that reducing conditions were persistent during peatification. Gymnosperm biomarkers such as isoprimarane, abietane, phyllocladane and sandaracopimarane, as well as angiosperm indicators (lupane) and hopanoid compounds with bacterial origin were identified. Analyses of the aromatic fractions revealed the presence of naphthalene, alkyl benzenes and phenols, pyrene, cadalene, cadinane, fluoranthene and dibenzofurane. Based on the FTIR analysis, aliphatic and oxygen containing structures were prevailed over the aromatic moieties. The intensity of the mineral bands was preferentially increased in the FTIR spectra of insoluble material. According to NMR analysis, the aliphatic carbons (0–50 ppm) have higher proportions comparing to aromatic carbons (100–160 ppm). The aromaticity fraction is low (fa = 0.32), as expected for these low rank coals. The presence of free organic radicals and Fe3+ and Mn2+ paramagnetic ions was revealed by EPR. In summary, the combined application of complementary analytical techniques allowed a deep inside into the geochemical characteristics of Amynteo lignites.  相似文献   

15.
Carbon dioxide (CO2) is considered to be the most important greenhouse gas in terms of overall effect. CO2 geological storage in coal beds is of academic and industrial interest because of economic synergies between greenhouse gas sequestration and coal bed methane (CH4) recovery by displacement/adsorption. Previously, most work focused on either theoretical analyses and mathematical simulations or gas adsorption?Cdesorption experiments using coal particles of millimeter size or smaller. Those studies provided basic understanding of CH4 recovery by CO2 displacement in coal fragments, but more relevant and realistic investigations are still rare. To study the processes more realistically, we conducted experimental CH4 displacement by CO2 and CO2 sequestration with intact 100?×?100?×?200?mm coal specimens. The coal specimen permeability was measured first, and results show that the permeability of the specimen is different for CH4 and CO2; the CO2 permeability was found to be at least two orders of magnitude greater than that for CH4. Simultaneously, a negative exponential relationship between the permeability and the applied mean stress on the specimen was found. Under the experimental stress conditions, 17.5?C28.0 volumes CO2 can be stored in one volume of coal, and the displacement ratio CO2?CCH4 is as much as 7.0?C13.9. The process of injection, adsorption and desorption, displacement, and output of gases proceeds smoothly under an applied constant pressure differential, and the CH4 content in the output gas amounted to 20?C50% at early stages, persisting to 10?C16% during the last stage of the experiments. Production rate and CH4 fraction are governed by complex factors including initial CH4 content, the pore and fissure fabric of the coal, the changes in this fabric as the result of differential adsorption of CO2, the applied stress, and so on. During CO2 injection and CH4 displacement, the coal can swell from effects of gas adsorption and desorption, leading to changes in the microstructure of the coal itself. Artificial stimulation (e.g. hydraulic fracturing) to improve coalbed transport properties for either CO2 sequestration or enhanced coal bed methane recovery will be necessary. The interactions of large-scale induced fractures with the fabric at the scale of observable fissures and fractures in the laboratory specimens, as well as to the pore scale processes associated with adsorption and desorption, remain of profound interest and a great challenge.  相似文献   

16.
Numerical modelling of the processes of CO2 storage in coal and enhanced coalbed methane (ECBM) production requires information on the kinetics of adsorption and desorption processes. In order to address this issue, the sorption kinetics of CO2 and CH4 were studied on a high volatile bituminous Pennsylvanian (Upper Carboniferous) coal (VRr=0.68%) from the Upper Silesian Basin of Poland in the dry and moisture-equilibrated states. The experiments were conducted on six different grain size fractions, ranging from <0.063 to 3 mm at temperatures of 45 and 32 °C, using a volumetric experimental setup. CO2 sorption was consistently faster than CH4 sorption under all experimental conditions. For moist coals, sorption rates of both gases were reduced by a factor of more than 2 with respect to dry coals and the sorption rate was found to be positively correlated with temperature. Generally, adsorption rates decreased with increasing grain size for all experimental conditions.Based on the experimental results, simple bidisperse modelling approaches are proposed for the sorption kinetics of CO2 and CH4 that may be readily implemented into reservoir simulators. These approaches consider the combination of two first-order reactions and provide, in contrast to the unipore model, a perfect fit of the experimental pressure decay curves. The results of this modeling approach show that the experimental data can be interpreted in terms of a fast and a slow sorption process. Half-life sorption times as well as the percentage of sorption capacity attributed to each of the two individual steps have been calculated.Further, it was shown that an upscaling of the experimental and modelling results for CO2 and CH4 can be achieved by performing experiments on different grain size fractions under the same experimental conditions.In addition to the sorption kinetics, sorption isotherms of the samples with different grain size fractions have been related to the variations in ash and maceral composition of the different grain size fractions.  相似文献   

17.
The experimental conditions allowing quantitative interpretation of liquid state 13C-NMR spectra of the humic acids, derived from the five Victorian brown coal lithotypes are described. The structure of the two classes of humic acids investigated for each lithotype vary significantly in their level of aromaticity, the level of polar functional groups and aliphatic chains attached to their polyaromatic skeletons. Variation is also observed in the degree of aromaticity and oxygen-containing functions of humic acids with lithotype. These data are interpreted in the light of paleobotanical evidence, which suggests that the lithotypes represent variations in depositional environment and input to the coal seam.  相似文献   

18.
实验变形煤的光性组构分析   总被引:4,自引:1,他引:4       下载免费PDF全文
三种Rmaxo分别为0.67%,3.41%和4.90%的煤样,在t=350-700℃、Pc=400-600MPa、ε=10%-30%、ε=3.63×10-4-2.59×10-5s-1条件下的变形实验表明:(1)煤光性组构的成因是芳环层片在构造应力作用下重新定向所致,重新定向的主要机制是煤化过程中芳环层片的择优成核生长,同时存在物理转动定向机制的作用;(2)芳环层片的重新定向主要发生在煤级相对较低阶段,VRI的Z轴主要反映这一阶段的构造应力方向;(3)YRI的形态特征并非仅与有限应变有关,它不能直接作为有限应变分析的标志。  相似文献   

19.
In this work, rice husk ash was used as silica source to synthesize NaX zeolite potentially suitable for CO2 adsorption. The produced material, denoted NaX-RHA, was characterized employing X-ray diffraction, scanning electron microscopy and gas adsorption porosimetry, in order to verify the occurred production of well-crystallized NaX zeolite with a significant degree of purity. CO2 adsorption isotherms on NaX-RHA were volumetrically evaluated in the 298–348 K temperature range up to standard pressure, revealing performances that are higher than those reported for commercial similar substrates. The experimental data regarding CO2 adsorption on NaX-RHA were very satisfyingly fitted by the semiempirical Sips model. Analyzing the best fitting values of model parameters allowed to conclude that the synthesized adsorbent could be quite suitable for applications like CO2 capture from flue gas.  相似文献   

20.
Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO2) and its storage in deep geologic formations. The processes of CO2 seepage into surface water after migration through water-saturated sediments are reviewed. Natural CO2 and CH4 fluxes are pervasive in surface-water environments and are good analogues to potential leakage and seepage of CO2. Buoyancy-driven bubble rise in surface water reaches a maximum velocity of approximately 30 cm s−1. CO2 rise in saturated porous media tends to occur as channel flow rather than bubble flow. A comparison of ebullition versus dispersive gas transport for CO2 and CH4 shows that bubble flow will dominate over dispersion in surface water. Gaseous CO2 solubility in variable-salinity waters decreases as pressure decreases leading to greater likelihood of ebullition and bubble flow in surface water as CO2 migrates upward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号