首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The trophic relationships in the association of the Yeso scallop Mizuhopecten yessoensis and its dominant endobiontic polychaete Polydora brevipalpa, which burrows into the scallop??s shell, and their potential food sources were studied using the method of fatty acid biochemical markers. It is shown that the differences in the diet of the scallop and the polychaete allow them to coexist in a close association. The trophic role of the association in the benthic community was revealed. The association selectively utilizes the food sources of the environment. It almost does not consume organic matter of bottom sediments, which allows it to coexist with other species in the community of higher order. There is minimal food competition between the association and detritivorous species; however, association can limit the development of species mostly foraging on diatom algae.  相似文献   

2.
D. D. Gabaev 《Oceanology》2009,49(2):218-227
The abundance dynamics of several species of bivalve mollusks spats were studied on scallop collectors situated in Minonosok bay of Pos’eta Gulf for 27 years and for 4 years in Kit bay of the Sea of Japan (Russia). A significant positive relation was found between the species having similar thermopathy: the Japanese scallop Mizuhopecten yessoensis and Swift’s scallop Swiftopecten swifti, as well as between the wrinkled rock borer Hiatella arctica and Swift’s scallop Swiftopecten swifti. A significant reverse relation was found between the bay mussel Mytilus trossulus and the Northern Pacific seastar Asterias amurensis. Some of the studied mollusks of Minonosok bay and the remote Kit bay display a significant reversed interrelation in their abundance dynamics caused by the precipitation regime. The one-way dispersion analysis a revealed significant influence of the water temperature in June and the precipitation abundance in the summer on Swift’s scallop’s dynamic abundance. The two-way dispersion analysis showed a significant influence of the ice period duration and the solar activity expressed in Wolf’s numbers on the Japanese scallop abundance dynamics. The uneven years in the period from 1977 to 1984 were usually productive for M. yessoensis and S. swifti spat. After 1985, the even years became more productive (there was asynchronicity in the abundance dynamics compared with 1977–1984). Such asynchronicity appeared with the advent of the new 22-year solar cycle, which caused a change in the magnet polarity in 1986.  相似文献   

3.
Sendai Bay in northern Japan suffered serious damage from massive tsunamis generated by the 2011 off the Pacific coast of Tohoku earthquake. The physical disturbance caused by a tsunami may affect the coastal ecosystem, including the planktonic diatom community. We investigated seasonal changes in the diatom community structure at a coastal and an offshore station in Sendai Bay, from June 2011 (3 months after the tsunami) to April 2014. Diatom abundance increased at both stations during the spring. Sporadic increases were also recorded at the coastal station during the summer because of silicate input from river discharge. Seasonal succession of the diatom communities was similar at both the coastal and offshore stations. The onset of the spring bloom consisted mainly of Chaetoceros spp. when water temperatures were low. Subsequently, species such as Skeletonema costatum s.l. became dominant as salinity and nutrient concentrations decreased. Cell density decreased from summer into early winter. Leptocylindrus danicus became dominant in the summer, but was replaced by Thalassiosira cf. mala from autumn into winter. Redundancy analysis (RDA) showed that most of the variation in the diatom community could be explained by temperature, salinity, NO3 ?, NO2 ?, PO4 3?, and SiO2. In addition, the occurrence of diatom species before the tsunami showed a similar pattern to that after the tsunami, suggesting that the tsunami did not have a serious impact on the diatom community in Sendai Bay.  相似文献   

4.
The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of less saline and warmer surface water (~1 m thick) caused by melting of the fast ice was observed in the fjord during the first days of May. In summer a less saline surface layer was about 3 m thick. Euphotic depth measured under ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (the content of total particulate matter in the fjord reached 1.66 kg m?2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate a start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, the presence of peridinin indicates the presence of Dinophyta and alloxanthin—the occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at the depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in the fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a/chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chloropyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer/chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.  相似文献   

5.
6.
Macrobenthic fauna in an estuarine Gwangyang Bay, southern Korean coast, were investigated to uncover recent variations in their community structures. In the study area, macrobenthic faunal communities were mainly composed of polychaete worms which were the most abundant faunal group with the highest values in species number and density, while mollusks accounted for the highest proportion in total biomass. There was no clear seasonal difference in species richness during the two year period of the investigation, but the mean density and biomass increased every spring and summer due to the mass recruitment of Theora fragilis. The Shannon’s diversity index (H') was more than 2.0 during most sampling seasons and did not show any significant seasonal difference except for the data in August, 2011 when azoic conditions occurred. The community structures of macrobenthos in Gwangyang Bay did not show any remarkable change in the dominance of the two top dominant species, Scoletoma longifolia and Heteromastus filiformis, which abundantly occurred in all seasons, except for the abundance peaks associated with high occurrence of T. fragilis and Paraprionospio cordifolia, especially in spring and summer and in autumn, respectively. These fauna changes reflected the changes in the macrobenthic community health status in Gwangyang Bay, where stable conditions and a healthy status prevailed in winter, but a slightly disturbed status prevailed from spring to autumn.  相似文献   

7.
Introduced species are a growing and imminent threat to living marine resources in parts of the world’s oceans. The present study is a rapid assessment survey of invasive macrobenthic invertebrate species in Korean ports. We surveyed over 40 ports around Korea during the period of May 2010~March 2013. Among the sampling sites were concrete walls, docks and associated floats, bumpers, tires, and ropes which might harbor non-native species. We found 15 invasive species as follows: one Sponge, two Bryozoans, three Mollusks, one Polychaete, four Cirripedes, and four Ascidians. Three morphologically similar species, namely X. atrata, M. galloprovincialis, and X. securis were further examined for distinctions in their morphology. Although they could be reasonably distinguished based on shell shapes, significant overlap was noted so that additional analysis may be required to correctly distinguish them. Although many of the introduced species have already spread to all three coastal areas, newly arrived invasive species showed a relatively restricted range, with a serpulid polychaete Ficopomatus enigmaticus and a mytilid bivalve Xenostrobus securis found only at a few sites on the East Coast. An exception is for Balanus perforatus, which has rapidly colonized the East coast of Korea following its introduction into the region. Successful management of invasive macrobenthic invertebrates should be established in order to contain the spread of these newly arrived species.  相似文献   

8.
The feeding, egg production, and respiration rate of the dominant pteropod Limacina helicina have been studied in Russia’s Arctic seas. The sinking rates of fecal pellets and dead individuals have been measured to estimate their role in vertical carbon flux. As has been shown, the rate of ecophysiological processes taking place in the pteropods is higher than that of copepods, the main consumers of phytoplankton. The gut pigment content in Limacina (3084 ng ind–1 as a maximum) was two orders of magnitude higher than in copepods. The egg production rate in Limacina even without feeding reached 4000 eggs ind–1 versus 350–450 egg ind–1 typical of the dominant copepods even with excess food. A close correlation between the pteropod feeding rate and individual body weight was observed for Limacina rather than a correlation with food concentration. The experimentally estimated sinking rate of Limacina fecal pellets was 270 m day–1, higher than for most copepods. The sinking rate of dead pteropods reaches 2000 m day–1. According to the literature, discarded mucous feeding nets sink at a rate of 80 to 1080 m day–1. Evidently, pteropods play a significant role in biogeochemical cycles by accelerating sedimentation. High rates of all studied processes suggest that Limacina are an important component of plankton communities and play the most important role in trophodynamics at sites of their accumulation.  相似文献   

9.
It is shown that, in 2002–2005, the mass development of the coccolithofore Emiliania huxleyi on the Gelendzhik shelf occurred annually and in May–June its abundance reached 1.5 × 106 cells/l. In 2004–2005, the bloom of E. huxleyi was accompanied by a mass development of the diatom alga Chaetoceros subtilis var. abnormis f. simplex (0.6–0.9 × 106 cells/l); for the first time, it was registered as a dominating form of the Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in the phytoplankton throughout the entire period of the studies. Meanwhile, in the early summer period, the bulk of the biomass consisted of coccolithophores (50–60%), while, in the late summer period, diatomaceous algae dominated (50–70%). Among the ecological factors that favor the coccolithophore development one may note the microstratification of the upper mixed layer at a high illumination level and high temperature in the surface waters (18–21°C). The terrigenous runoff during the rainy period had a negative effect on the E. huxleyi development, while storms dispersed the population over the upper mixed layer. The wind-induced near-shore upwelling stimulated the development of diatoms.  相似文献   

10.
In 2012, expeditions of the Institute of Microbiology, Russian Academy of Sciences, delivered samples of algo-bacterial mats from Kulunda steppe alkaline lakes (Petukhovskoe alkaline lake, Tanatar VI, and Gorchina III). The filamentous alga Ctenocladus circinnatus (Chlorophyta) acted as an edificator of the mats. The composition of cenoses algocomponents also included chlorophytes Dunaliella viridis and Picocystis salinarum as well as diatoms Anomeoneis sphaerophora, Brachysira brebissonii, B. zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, N. cf. communis, and Nitzschia sp. 1. The composition and structure of phototrophic algae cenoses (including diatom taxocenes) were described for the investigated lakes for the first time. For the period from 2011 to 2012, the total mineralization significantly increased in lakes. This involved sensible alterations of cenoses. B. zellensis was the most permanent component of diatom taxocenes in both seasons. In the summer of 2011, it was often accompanied by A. sphaerophora and B. brebissonii. In the summer of 2012, A. sphaerophora was found only singularly in Lake Gorchina III, and some biotopes of Lake Tanatar VI were massively inhabited by N. cf. communis, including colonies that had not been previously described for the species. The genetic analysis of three diatoms, which are markedly different from each other in their appearance and were sampled from different lakes but were all determined as Nitzschia cf. communis, showed their complete similarity to each other with the 18S rRNA gene fragment and the highest similarity of all the three diatoms with the species Nitzschia communis.  相似文献   

11.
The distribution of macrozoobenthic communities was studied in a vast ultrashallow (0–1.2 m deep) zone of northwestern Taman Bay (separated from the Kerch Strait by Chushka spit) in 2008–2009. Fifty-two species of benthic invertebrates were recorded. The species number, as well as Shannon and Pielou diversity indices, increased along Chushka spit from base to tip. The usual inhabitants of lagoons and estuaries of the Mediterranean Basin and the open Sea of Azov dominated in benthic communities: mollusks Abra segmentum and Hydrobia acuta and polychaetes Heteromastus filiformis and Hediste diversicolor (the latter only in summer). Changes in the community structure were largely determined by the seasonal dynamics of dominant species populations, which was similar to their dynamics in certainother transitional water bodies of the Mediterranean Basin. These changes indicate normal running of seasonal processes in the macrobenthic communities of Taman Bay in 2008 rather than the consequences of a catastrophic black oil spill in the Kerch Strait in November 2007.  相似文献   

12.
The biomass and size fraction of phytoplankton in terms of chlorophyll a(Chl a) was measured during four cruises conducted in April, July, October 2013 and January 2014 in mariculture area, the Sanggou Bay, China.Results show that total Chl a levels in the surface seawater of the Sanggou Bay generally range from 0.10 to 20.46μg/L, with an average value of 2.13 μg/L. Nano-phytoplankton was the most important size-fraction and accounted for about 65.1% of total Chl a. In order to evaluate the importance of the "protozoan trophic link" for energy transfer from the microbial loop to filter-feeding feeders, Zhikong scallop Chlamys farreri was then offered a natural planktonic community as potential prey. Results show that scallops obtained carbon source from natural plankton with the rate of 11 033.05 μg/(g·d). Protists(nanoflagellates and ciliates) were the dominant source of carbon retained by scallop(48.78%). The microbial loop provided 58.45% of the carbon source for farmed scallops. These results indicate that the microbial loop represent a valuable trophic resource in mariculture system of the Sanggou Bay.  相似文献   

13.
The species composition and seasonal dynamics of the population density and biomass of the prasinophycean algae of the genus Pyramimonas were investigated in the Russian waters of the East/Japan Sea. According to literature data and the results of our observations, eight species of the prasinophycean algae were identified, and some of them were new for the Russian waters of the East/Japan Sea as follows: P. aff. amylifera Ñonrad, P. aff. cordata McFadden, Hill et Wetherbee, and P. nansenii Braarud. An analysis of their seasonal dynamics showed that the most conspicuous winter peak of the population density of Pyramimonas species in the Amurskii Bay was clearly distinguishable in February. In winter and early spring, the prasinophycean algae made a considerable contribution of 28 to 60% into the total population density on the background of a relatively low biomass, 1.1–14.4% of the total phytoplankton biomass in the Amurskii Bay. In the Golden Horn Bay, the summer peak of the population density of Pyramimonas species was most intensive in June. In summer, during the period of mass development of the algae of the genus Pyramimonas in the Golden Horn Bay, the prasinophycean algae contributed up to 71% of the total population density and up to 84% of the total microalgal biomass. An increase was noted in the density and biomass of the Pyramimonas species in the polluted waters near the sewage water outlets in the Amurskii and Golden Horn bays.  相似文献   

14.
The analysis of the macroalgae distribution along the salinity gradient in the Azov Sea, the Kerch strait, and Taman Bay during the summer allowed finding two macroalgae complexes. The first complex (brackish) is formed by algae belonging to the Enteromorpha, Cladophora, Rhizoclonium, and Chaetomorpha genera in the Taganrog Gulf. The second complex (marine) with dominating algae belonging to the Enteromorpha, Chaetomorpha, Ceramium, and Polysiphonia inhabits the littoral part of the Azov Sea itself, the Kerch Strait, and Taman Bay. The saprobe analysis of the flora showed that the majority of macroalgae species inhabiting the Azov Sea are represented by meso- and polysaprobes and a small number of oligosaprobe species inhabit the Kerch Strait. The biggest species diversity of macroalgae was noted in the southwestern part of the sea; the value of Shannon’s index was 0.65 in the Taganrog Gulf, 1.04 in the Azov Sea, 1.38 in Taman Bay. The leading role in the littoral communities of Taganrog Gulf belongs to aquatic flowering plants with Potamogeton perfoliatus being dominant; as the salinity increases, the share of such species as P. pectinatus, Zostera marina, Z. noltii, Ruppia maritime, and Zannichellia major starts to increase.  相似文献   

15.
Mesozooplankton community structure and environmental factors were monitored monthly at a fixed station off Tongyeong, southeastern coast of Korea, from 2011 to 2014 to better understand the variability of the mesozooplankton community in relation to changes in the marine environment. Total mesozooplankton density varied from 747 to 8,945 inds. m-3 with peaks in summer. The surface water temperature (r = 0.338, p < 0.05) and chlorophyll-a (Chl-a) concentration (r = 0.505, p < 0.001) were parts of the factors that may have induced the mesozooplankton peaks in summer. Copepods accounted for 71% of total mesozooplankton. Total copepod density, particularly cyclopoid copepods, increased during the study period. Cumulative sum plots and anomalies of the cyclopoid copepod density revealed a change of the cyclopoid density from negative to positive in June 2013. A positive relationship between cyclopoid copepods and the Chl-a concentration (r = 0.327, p < 0.05) appeared to be one of the reasons for the increase in cyclopoids. Dominant mesozooplankton species such as Paracalanus parvus s.l., Oikopleura spp., Evadne tergestina, Cirripedia larvae, Corycaeus affinis, Calanus sinicus, and Oithona similis accounted for 60% of total mesozooplankton density. Based on cluster analysis of the mesozooplankton community by year, the seasonal distinction among groups was different in 2014 compared to other years. P. parvus s.l. and its copepodites contributed most in all groups in all four years. Our results suggest that the high Chl-a concentration since 2013 may have caused the changes in mesozooplankton community structure in the study area.  相似文献   

16.
Phytoplankton is a key component in the functioning of marine ecosystems, phytoplankton community structures are very sensitive to their environment. This study was conducted in the central Bohai Sea in the spring and early summer of 2015. Spatial variations in phytoplankton functional groups were examined through high-performance liquid chromatography pigment–CHEMTAX analysis. Results suggested that the phytoplankton biomass (chlorophyll a [Chl a]) in spring was mainly derived from the diatom community and was 3.5-fold higher than that in the summer. Meanwhile, the phytoplankton in the early summer sustained more diverse marker pigments than that in the spring. Despite the overwhelming predominance of microsized phytoplankton in the spring, some smaller phytoplankton (pico- or nanosized), including flagellates, such as prasinophytes, chlorophytes, and cryptophytes, highly contributed to the total Chl a in the summer. Various physico-chemical variables were recorded, and their correlations with phytoplankton density were established by redundancy analysis. Temperature, water stratification, nutrient availability, and even nutritive proportion influenced the succession of phytoplankton functional groups from diatom dominance in the spring to flagellate (mainly haptophytes and prasinophytes) dominance in the early summer. In conclusion, our work comprehensively evaluated the phytoplankton diversity and dynamics in the central Bohai Sea and suggests the need for long-term monitoring for further investigation.  相似文献   

17.
The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6–11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.  相似文献   

18.
The spionid polychaete Paraprionospio pinnata (Ehlers 1901) has been widely reported from Korean waters. We examined some specimens belonging to the genus Paraprionospio that had been collected from Korean waters, and identified them as Paraprionospio coora Wilson, 1990, Paraprionospio cordifolia Yokoyama, 2007 and Paraprionospio patiens Yokoyama, 2007, which are new to the fauna of Korea. The present study suggests misidentification of the specimens that have been previously reported as P. pinnata from Korean waters.  相似文献   

19.
The present investigation was targeted at diatom composition studies in the surface sediments (0–1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80–100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3–60.0 106 per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.  相似文献   

20.
Due to its unique geological location, the Bering Sea is an ideal place to investigate the water exchange and ecosystem connectivity of the Pacific Ocean–Arctic Ocean and subarctic–Arctic region. Based on a number of summer surveys(July to September, 2010, 2012 and 2014), macrobenthic communities and their spatial-temporal patterns are exhibited for the majority of the Bering Sea(53°59′–64°36′N). The results show that the macrobenthic communities were dominated by northern cold-water species and immigrant eurythermic species, and the communities assumed a dispersed and patchy distribution pattern. Polychaetes(Scoloplos armiger), crustaceans(Ceradocus capensis) and sea urchins(Echinarachnius parma) were the main dominant groups in the shallow shelves; the sea star(Ctenodiscus crispatus) and the brittle star(Ophiura sarsii) were the main dominant groups in the continental slope; whereas small polychaetes(Prionospio malmgreni) dominated the basin area. Sediment type, water depth, and currents were the major factors affecting the structure and spatial distribution of the macrobenthic communities. Compared with other seas, the shallow areas of the Bering Sea showed an extremely high-standing biomass. In particular, the northern shelf area(north of St. Lawrence Islands and west of 170°W),which is primarily controlled by Anadyr Water, is an undersea oasis. In contrast, a deficiency in the downward transport of particulate organic carbon has resulted in a desert-like seabed in the basin area. By comparing our results to previous studies, we found that macrobenthic communities of the Bering Sea have undergone significant structural changes in recent decades, resulting in a decrease in abundance and an increase in biomass.In addition, populations of amphipods and bivalves in the northern shelves have decreased significantly and have been gradually replaced by other species. These changes might be associated with advanced seasonal ice melting,changes in organic carbon input, and global warming, indicating that large-scale ecosystem changes have been occurring in the Bering Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号