首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (γH/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k h) for different combinations of H/D and ?; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k h is the earthquake acceleration coefficient and (4) γ, c and ? define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k h. With an inclusion of k h, the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.  相似文献   

2.
Liu  Wei  Shi  Peixin  Chen  Lijuan  Tang  Qiang 《Acta Geotechnica》2020,15(3):781-794

This paper develops the 2D and 3D kinematically admissible mechanisms for analyzing the passive face stability during shield tunneling using upper-bound analysis. The mechanisms consider trapezoidal distribution of support pressure along tunnel face and partial failure originated at tunnel face above invert. For cohesionless soils, the support pressure is a function of soil effective frictional angle φ′ which determines the inclination of failure block and the normalized soil cover depth C/D (soil cover depth/tunnel diameter) which affects the origination of the passive failure. For cohesive soils, the support pressure is a function of φ′, C/D, and the effective cohesion c′. The cohesion c′ has a relatively smaller impact on the support pressure than φ′ and C/D have. The mechanisms are verified by comparing the current solutions with a previous upper-bound solution. The comparison shows that the current solutions are a general solution which is capable of predicting the passive face failure originated at any depth along tunnel face and the previous solution is a particular solution with the assumption that the face failure originated at tunnel invert. The mechanisms are validated through application to a practical project of shallowly buried, large diameter underwater tunnel. The validation shows that the mechanisms are capable of assessing the tunnel face passive instability rationally.

  相似文献   

3.
In this paper, a numerical simulation method for evaluating tunnelling-induced ground movement is presented. The method involves discrete element simulation of TBM slurry shield advancement and considers explicitly soil excavation from the face, effects of varying face support pressure, and the influence of tunnel cover depth. For the cases studied, it is found that for tunnel cover depths (C/D) between 0.7 and 2.1, ground deformations inducing by the tunnelling can be controlled within a certain extent and tunnel face stability can ensured, provided the support pressure ratio (N) lies between 0.8 and 1.5. The proposed method is reasonably benefited to modeling the face stability in shield-driven tunnels in soft soils.  相似文献   

4.

An axisymmetric lower bound limit analysis technique in combination with the finite elements has been used to investigate the effect of considering a non-associated flow rule on the stability number (γH/c) for a vertical circular unsupported excavation in a general cohesive–frictional soil medium, where (1) H is the excavation height, (2) γ defines the unit weight of the soil mass, and (3) c indicates the cohesion of the soil mass. The results are derived for different magnitudes of dilative coefficient (η), friction angle (?), and normalized excavation height (H/b), where b = the radius of the excavation. The results clearly indicate the increase in γH/c with an increase in η value. It is expected that the charts provided in this note will be quite helpful for the practicing engineers.

  相似文献   

5.
Controlling the face stability of shallow shield tunnels is difficult due to the inadequate understanding of face failure mechanism. The failure mechanism and the limit support pressure of a tunnel face in dry sandy ground were investigated by using discrete element method (DEM), which has particular advantages for revealing mechanical properties of granular materials. The contact parameters of the dry sand particles were obtained by calibrating the results of laboratory direct shear tests. A series of three-dimensional DEM models for different ratios of the cover depth to the diameter of the tunnel (C/= 0.5, 1, and 2; i.e., relative depth) were then built to simulated the process of tunnel face failure. The limit support pressure, failure zone and soil arching were discussed and compared with other methods. The results of DEM simulations show that the process of tunnel face failure can be divided into two stages. With the increase of the horizontal displacement of the tunnel face, the support pressure decreases to the limit support pressure and then increases to the residual support pressure. The limit support pressure increases with the rise of relative depth and then tends to be constant. In the process of tunnel face failure, the failure zone is gradually enlarged in size and expands to the ground surface. The numerical results also demonstrate that soil arching occurs in the upper part of the failure zone and the soil becomes loosened in the failure zone. Consequently, the comprehensive analysis of tunnel face failure may help to guarantee safe construction during tunneling.  相似文献   

6.
The stability of tunnels is an important problem in geotechnical engineering. Most of the previous studies dealing with the stability of unlined tunnels are deterministic in nature and do not consider the soil spatial variability. This study investigates the influence of spatial variability on the undrained stability of an unlined circular tunnel, using Random Adaptive Finite Element Limit Analysis (RAFELA). The effect of spatial variability is investigated for tunnels having two different ratios of γD/cu, for different spatial correlation lengths and tunnel depths. The results indicate that the effect of spatial variability depends on γD/cu and the depth of the tunnel.  相似文献   

7.
By applying the lower bound finite element limit analysis in conjunction with non-linear optimisation, the bearing capacity factors, Nc, Nq and Nγ, due to the components of cohesion, surcharge and unit weight, respectively, have been estimated for a horizontal strip footing placed along a sloping ground surface. The variation of Nc, Nq and Nγ with changes in slope angle (β) for different soil friction angle (φ) have been computed for smooth as well as rough strip footings. The analysis reveals that along a sloping ground surface, in addition to Nγ, the factors Nc and Nq also vary considerably with changes in footing roughness. Compared to the smooth footing, the extent of the plastic zone around the footing becomes greater for the rough footing. The results obtained from the analysis are found to compare well with those previously reported in literature.  相似文献   

8.
This paper investigates the face stability of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests. A half-circular tunnel model with a rigid front face was designed and tested. The ground movement was mobilized by pulling the tunnel face backwards at different speeds. The support pressure at tunnel face, settlement at ground surface, and internal movement of soil body were measured by load cells, linear variable differential transducers, and a camera, respectively, and the progress of face failure was observed through a transparent lateral wall of model tank. The tests show that, as the tunnel face moves backwards, the support pressure at the tunnel face drops sharply initially, then rebounds slightly, and tends to be stabilized at the end. Similarly, the ground surface settlement shows a three-stage variation pattern. Using the particle image velocimetry technique, the particle movement, shear strain, and vortex location of soil are analyzed. The variation of support pressure and ground surface settlement related to the internal movement of soil particles is discussed. The impact of the tunnel face moving speed on the face stability is discussed. As the tunnel face moves relatively fast, soil failure originates from a height above tunnel invert and an analytical model is developed to analyze such failure.  相似文献   

9.
The kinematic approach in combination with numerical simulation is used to examine the effect of pore water pressure on tunnel face stability. Pore water pressure distribution obtained by numerical calculations using FLAC3D is used to interpolate the pore water pressure on a 3D rotational collapse mechanism. Comparisons are made to check the present approach against other solutions, showing that the present approach improves the existing upper bound solutions. Results obtained indicate that critical effective face pressure increases with water table elevation. Several normalized charts are also presented for quick evaluation of tunnel face stability. At the end of the paper, the influence of anisotropic permeability on tunnel face stability is also discussed, showing that the isotropic model leads to an overestimation of the necessary tunnel face pressure for anisotropic soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
于丽  吕城  段儒禹  王明年 《岩土力学》2020,41(1):194-204
浅埋土质隧道的稳定性研究一直是隧道工程的关键问题,而孔隙水压力的存在影响着浅埋土质隧道的安全。构建了隧道顶部为圆弧形的浅埋土质隧道的三维塌落机制,基于非线性Mohr-Coulomb破坏准则和极限分析上限法,并考虑孔隙水压力的作用,推导出浅埋土质隧道的塌落范围及支护力的最优上限解计算公式。通过与既有研究进行对比,验证了所提方法的合理性。分析了不同参数对塌落范围、塌落土体的重力及支护力的影响,结果表明:孔隙水压力对浅埋土质隧道的塌落范围、塌落土体的重力及支护力有着显著的影响;孔隙水压力对塌落范围、塌落土体重力的影响比较复杂,而支护力都随着孔隙水压力系数的增大而增大;不同参数对浅埋土质隧道的塌落范围、塌落土体的重力及支护力的影响规律不同。新方法可为浅埋土质隧道的设计优化提供理论支撑。  相似文献   

11.
砂土中隧洞开挖引起的地面沉降试验研究   总被引:15,自引:3,他引:12  
周小文  濮家骝 《岩土力学》2002,23(5):559-563
利用离心模型试验研究隧洞开挖中支护压力P与地层位移S的关系以及地面沉降槽的形态。得到归一化P-S曲线和沉降槽计算参数。还分析了土类、密度和含水量对地层位移的影响。  相似文献   

12.
隧道斜交穿越地裂缝的模型试验研究   总被引:1,自引:0,他引:1  
李建军  邵生俊  熊田芳 《岩土力学》2010,31(Z1):115-120
西安地区由北向南间隔分布有十多条近东西走向的地裂缝,建设中的多条地铁线路与地裂缝呈斜交状态。为了揭示地铁隧道斜交穿越地裂缝时受地裂缝活动而产生的力学性状变化,采用50:1几何相似比尺的物理模型试验仪,在合理模拟围岩地层、衬砌结构、应力条件、地裂缝与洞轴线交角及其错动位移基础上,开展了斜交地裂缝活动条件下隧道衬砌结构与围岩相互作用的物理模型试验研究,并与正交地裂缝活动下的测试结果进行了对比分析。表明斜交地裂缝活动对地铁隧道的影响范围更大,各变形缝均有明显的沉降差发展;邻近斜交地裂缝的衬砌结构易处于“悬臂梁”受力状态,衬砌结构不均匀沉降使其产生旋转位移,围岩土压力变化使衬砌结构内力产生显著变化;随着地裂缝错动位移的发展,上盘内拱顶和下盘拱顶、拱底出现围岩作用的加强,而上盘拱底出现围岩作用的松弛。与隧道正交穿越地裂缝的情况比较,斜交穿越地裂缝时围岩土压力和衬砌结构内力变化更大,易出现拉裂破坏。  相似文献   

13.
This article examines the capability of Minimax Probability Machine (MPM) for the determination of stability of slope. MPM is constructed within a probabilistic framework. This study uses MPM as classification and regression tools. Unit weight (γ), cohesion (c), angle of internal friction (φ), slope angle (β), height (H) and pore water pressure coefficient (ru) have been used as inputs of the MPM model. The outputs of MPM are stability status of slope and factor of safety (F). The results of MPM have been compared with the artificial neural network models. The experimental results demonstrate that the developed MPM is a promising tool for the determination of stability of slope.  相似文献   

14.
This paper investigates tunnel face stability in soft rock masses via coupled limit and reliability analyses. Specifically, a 3D face collapse mechanism was first constructed. Then the Hoek–Brown failure criterion was introduced into the limit analysis via the tangential technique. Taking the variability of rock mass parameters and loads into consideration, a reliability model was established. The collapse pressure and failure range of tunnel faces were determined. In addition, the required factor of safety (FS) and supporting pressure under three safety levels were obtained, and the corresponding safety level graphs for support design were presented. Comparison of the obtained results with previous work demonstrates the rationality of the 3D collapse mechanism and the validity of the results. A decrease in the geological strength index, Hoek–Brown parameter mi, and uniaxial compressive strength or an increase in the disturbance factor results in a nonlinear increase of the collapse pressure and an enlargement of the failure zone. Such changes also lead to a nonlinear increase of the required support pressure under a certain safety level. By contrast, the FS does not exhibit any obvious change when these parameters vary. Therefore, when a rock mass is of poor quality or heavily disturbed, the advance support should be enlarged from upper front to right above the tunnel face. Moreover, as the safety level increases, both the required FS and supporting pressure of the tunnel face increase nonlinearly at a higher rate.  相似文献   

15.
A kinematic method of slices has been used in this article to deal with the stability problems of strip foundations subjected to uplift loads. The method is based on the upper bound theorem of limit analysis and satisfies the kinematic admissiblility of the chosen collapse mechanism. Assuming the global rupture surface as an arc of logarithmic spiral, uplift factors Fc, Fq and Fγ separately for the effects of cohesion, surcharge and density have been determined. The effect of the yielding of soil mass with partial soil shear strength parameters along the slice interfaces on the results has been examined. The ultimate uplift capacity increases with increase in soil shear strength along the interfaces of slices. The results compare reasonably well with the various existing theories and reported experimental tests data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
王俊  王闯  何川  胡雄玉  江英超 《岩土力学》2018,39(8):3038-3046
采用?800 mm模型土压盾构开展室内掘进试验,以探究砂卵石中土压盾构隧道掌子面失稳诱发地层变形特征。同时,补充开展三维离散元仿真以挖掘室内试验难以获取的掌子面失稳信息,并研究隧道埋深对掌子面稳定性的影响规律。研究结果表明:砂卵石地层中盾构隧道掌子面失稳发展到地表后,沉降曲面呈上大下小逐步收缩的沙漏状,影响范围小于砂土地层。考虑盾构动态掘进过程后,卵石颗粒接触关系变化十分剧烈,掌子面稳定性被削弱,极限支护压力随之增大。掌子面极限支护压力随隧道埋深基本呈线性增加,极限支护压力与初始支护压力之比则随埋深增大而减小。掌子面失稳机制可根据隧道埋深划分为3种模式。与既有研究相比,考虑了盾构动态掘进过程与实际工程更加接近,可为确保砂卵石地层土压盾构隧道施工掌子面稳定提供参考。  相似文献   

17.
隧洞拱冠砂土位移与破坏的离心模型试验研究   总被引:9,自引:1,他引:8  
通过离心模型试验,对隧洞拱冠以上地层位移与隧洞内支护压力的关系及临界支护压力进行了研究。结果表明:在砂土中开挖隧洞,由于砂土抗剪强度的发挥,隧洞拱冠以上砂土在远小于原位上覆土压力的支护压力下仅发生一定的位移而不致塌落;因此,若允许地表面发生少许沉降,隧洞内支护压力可以比原位上覆土压力有较大程度的降低。  相似文献   

18.
建立了包括地层模型、桩基荷载模型、浅埋隧道开挖模型和支护模型以及桩基荷载、地层压力、地层沉降、支护应变量测装置的平面应变模型试验系统;通过模型试验,研究了不同水平、竖向相对位置处的既有桩基荷载对附近浅埋隧道开挖引起的地层压力重分布、地层沉降及隧道支护内力的影响特征。另外,采用FLAC3D软件,对模型试验及不同工况进行了数值模拟。结果表明:(1)与没有桩基荷载的自由地层中的隧道开挖试验相比较,地层中的既有桩基荷载会明显地改变邻近浅埋隧道开挖引起的地层压力重分布、地层沉降及隧道支护内力;(2)对于桩径和水平相对距离都相同,但桩长不同的桩基荷载,桩长与隧道埋深比值为1.0时,对隧道开挖效应影响最大,二者比值小于1.0时,其影响程度随着比值的减小而减小,二者比值大于1.0时,桩长的改变对隧道开挖效应影响较小;(3)对于桩径和桩长都相同的桩基荷载,对地层压力、地层沉降及支护内力的影响随桩基荷载与隧道的水平距离的减小而增大,桩基荷载距隧道的水平距离与隧道直径比值介于0.5~4.0时,桩基荷载对隧道开挖效应影响较大,隧道较危险,比值介于4.0~6.0时,影响较小,比值>6.0时,影响可以忽略不计。  相似文献   

19.
The instantaneous response of saturated low permeability grounds to tunnel excavation is important for deformations and stability close to the tunnel face. It is characterized by zero volume change in combination with the development of excess pore pressures. In tunnelling through poor quality ground under great depth of cover and high in situ pore pressure, heavily squeezing conditions (characterized by very large convergences) may occur soon after excavation. This paper presents exact finite strain analytical solutions for the undrained ground response around cylindrical and spherical openings that are unloaded from uniform and isotropic initial stress states, on the basis of the Modified Cam Clay (MCC) model and the Mohr–Coulomb (MC) model. The solution for a Drucker–Prager material is also given as it requires only a very small modification to the MC solution. The so‐called ground response curve, that is, the relationship between the support pressure and the cavity wall displacement, is derived in closed form for the MC model. The solution for the MCC problem is semi‐analytical in that it uses the trapezium rule for the computation of a definite integral. The influence of the significant parameters of the problem on the predicted deformation behaviour is shown by means of dimensionless charts. Finally, the practical usefulness of the solutions presented is illustrated by applying them to the breccia zones of the planned Gibraltar Strait tunnel – an extreme case of weak, low permeability ground under high pore pressure. The solutions can serve as a trustworthy benchmark for numerical procedures that incorporate material and geometric nonlinearities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
非均质黏土地基中平面应变隧道最小支护压力数值模拟   总被引:1,自引:0,他引:1  
周维祥  黄茂松  吕玺琳 《岩土力学》2010,31(Z2):418-421
土体由于沉积而具有天然的非均质性,但关于非均质地基中隧道开挖面稳定性的研究却很稀少,在实际盾构隧道工程中均按均质地基对待。但这一简化并没有考虑非均质性对保持开挖面稳定所需最小支护压力的有利作用,以及对破坏模式的影响。故文中采用基于tresca准则的弹塑性有限元法来研究黏聚力随深度线性变化的纯黏土地基中平面应变隧道的开挖面稳定性,模拟了土体失稳渐进破坏的全过程。最终验证了无量纲化的有效性,得到了各种工况时保持土体稳定的最小支护压力值,并发现了黏聚力线性变化斜率对深埋隧道破坏模式的影响,可为理论分析和工程实践提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号