首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Assessment of tunnel stability has become increasingly crucial as more and more tunnels are built in difficult terrains such as sloping ground. The required support pressure on the tunnel walls associates both tunnel stability and liner design considerations. The present analysis attempts to find a uniform internal pressure which can support a circular tunnel built in a sloping ground with a particular level of stability in cohesive-frictional soils. The lower bound finite element limit analysis has been applied to find the required minimum uniform internal support pressure presented as a non-dimensional term p/c; where p is the minimum normal internal pressure on the tunnel boundary to avoid collapse and c is the cohesion of soil. The variation of p/c is presented for a range of normalised embedment depth of tunnel (H/D), stability number (γD/c), internal friction angle of soil (?) and slope angle (β); where H is the crown depth of the tunnel, D is the tunnel diameter and γ is the unit weight of soil. Appropriate comparisons have been carried out with available literature. Failure patterns of the tunnel have also been studied to understand the extent and the type of failure zone which may generate during the collapse.  相似文献   

2.
By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (γH/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k h) for different combinations of H/D and ?; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k h is the earthquake acceleration coefficient and (4) γ, c and ? define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k h. With an inclusion of k h, the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.  相似文献   

3.
To investigate the realistic ground behavior during tunneling, a new device has been developed. With the new device, model tests of tunnel excavation considering an existing tunnel and an existing building were carried out. Non-linear finite element analyses corresponding to the model tests were also conducted using FEMtij-2D software where an elastoplastic subloading t ij model was used to describe the mechanical behavior of soil. Earth pressure distribution around the tunnels and ground movements during tunnel excavation depend on the distance and position between the twin tunnels. There is a significant effect of tunneling on the existing foundation of building even in the case where the tunnel is constructed in deep underground. The numerical analyses capture well the results of the model tests.  相似文献   

4.
Water leakage problems in unlined or shotcrete lined water tunnels are not new issues. In many occasions severe water leakage problems have been faced that not only have reduced the stability of the rock mass, but also have caused valuable water to be lost from it, causing safety risk as well as huge economic loss to the projects. Hence, making tunnels water tight plays an important role in improving stability and safety of underground excavations. The real challenge is however accurate prediction and quantification of possible water leakage, so that cost consequences can be incorporated during planning of a water conveying tunnel project. The main purposes of this paper are to analyze extensive data on leakage test carried out through exploratory drillhole used to define the need for pre-injection grouting of Khimti headrace tunnel and to carry out probabilistic approach of uncertainty analysis based on relationship established between leakage, hydrostatic head and selected Q-value parameters. The authors believe that the new approach regarding uncertainty analysis of leakage presented in this paper will improve the understanding of leakage characteristics of the rock mass, and hope this will lead to a better understanding concerning quantification of possible water leakage from unlined and shotcrete lined water tunnels.  相似文献   

5.
The excess pore water pressure distribution (u) induced by the penetration of a piezocone into clay and its dissipation behaviour have been investigated by laboratory model tests, theoretical analysis and numerical simulation. Based on the results of the tests and the analysis, a semi-theoretical method has been proposed to predict the piezocone penetration-induced pore pressure distribution in the radial direction from the shoulder of the cone. The method can consider the effect of the undrained shear strength (su), over-consolidation ratio (OCR) and rigidity index (Ir) of the soil. With a reliably predicted initial distribution of u and the measured curve of dissipation of pore water pressure at the shoulder of the cone (u2), the coefficient of consolidation of the soil in the horizontal direction (ch) can be back-fitted by analysis of the pore pressure dissipation. Comparing the back-fitted values of ch with the values directly estimated by a previously proposed method indicates that the previously proposed method can be used reliably to estimate ch values from non-standard dissipation curves (where u2 increases initially and then dissipates with time).  相似文献   

6.
Rainfall infiltration poses a disastrous threat to the slope stability in many regions around the world. This paper proposes an extreme gradient boosting (XGBoost)-based stochastic analysis framework to estimate the rainfall-induced slope failure probability. An unsaturated slope under rainfall infiltration in spatially varying soils is selected in this study to investigate the influences of the spatial variability of soil properties (including effective cohesion c′, effective friction angle φ′ and saturated hydraulic conductivity ks), as well as rainfall intensity and rainfall pattern on the slope failure probability. Results show that the proposed framework in this study is capable of computing the failure probability with accuracy and high efficiency. The spatial variability of ks cannot be overlooked in the reliability analysis. Otherwise, the rainfall-induced slope failure probability will be underestimated. It is found that the rainfall intensity and rainfall pattern have significant effect on the probability of failure. Moreover, the failure probabilities under various rainfall intensities and patterns can be easily obtained with the aid of the proposed framework, which can provide timely guidance for the landslide emergency management departments.  相似文献   

7.
An advanced hypoplastic constitutive model is used in probabilistic analyses of a typical geotechnical problem, strip footing. Spatial variability of soil parameters, rather than state variables, is considered in the study. The model, including horizontal and vertical correlation lengths, was calibrated using a comprehensive set of experimental data on sand from horizontally stratified deposit. Some parameters followed normal, whereas other followed lognormal distributions. Monte-Carlo simulations revealed that the foundation displacement uy for a given load followed closely the lognormal distribution, even though some model parameters were distributed normally. Correlation length in the vertical direction θv was varied in the simulation. The case of infinite correlation length was used for evaluation of different approximate probabilistic methods (first order second moment method and several point estimate methods). In the random field Monte-Carlo analyses with finite θv, the vertical correlation length was found to have minor effect on the mean value of uy, but significant effect on its standard deviation. As expected, it decreased with decreasing θv due to spatial averaging of soil properties.  相似文献   

8.
ABSTRACT

Probabilistic methods in geotechnical engineering have received a lot of attention during the last decade and different methodologies are used to capture the inherent variability of soil in different geotechnical engineering problems. In this paper, numerical simulations are conducted to obtain the bearing capacity factor, Nγ, for a purely frictional heterogenous soil where the friction angle is modelled as randomly distributed throughout the domain and the effect of its spatial variability on Nγ is investigated. A finite element method, based on the upper bound limit analysis was combined with random field theory and linear programming to develop a probabilistic analysis. Monte Carlo simulations were performed and the effect of the variability of the friction angle defined by statistical parameters on the bearing capacity factor was investigated. Results show that the mean bearing capacity factor Nγ of a footing on a spatially variable cohesionless soil is generally higher than the deterministic Nγ obtained from a constant mean value. Increasing the heterogeneity of the friction angle by an increase in the coefficient of variation generally increases this deviation. This can be explained by the nonlinearity of the relationship between Nγ and the friction angle.  相似文献   

9.
A cross-correlation analysis is conducted to determine the impacts of the heterogeneity of hydraulic conductivity Ks, soil cohesion c′ and soil friction angle (tan φ′) on the uncertainty of slope stability in time and space during rainfall. We find the relative importance of tan φ′ and c′ depends on the effective stress. While the sensitivity of the stability to the variability of Ks is small, the large coefficient of variation of Ks may exacerbate the variability of pore-water pressure. Therefore, characterizing the heterogeneity of hydraulic properties and pore-water distribution in the field is critical to the stability analysis.  相似文献   

10.
Increasing demands on infrastructures increases the attention on shallow soft ground tunneling methods in urbanized areas. Especially, in metro tunnel excavations, it is important to control the surface settlements observed before and after excavation, which may cause damage to surface structures. To solve this problem, earth pressure balance machines (EPBMs) have widely been used throughout the world. This study focuses on surface settlement measurements, the interaction of twin tunnel surface settlement, and the relationship between shield parameters and surface settlement for parallel tunnels using EPBM shields in clay and sand soils. In this study, the tunnels were excavated using two EPBMs. The tunnels were 6.5 m in diameter, as twin tubes with a 14 m distance from center to center. The EPBM in the first tube followed about 100 m behind the other tube. Segmental lining with 1.4 m of length was employed as a final support. The results from this study showed that (1) the most important parameters for the maximum surface settlements are the face pressure and backfill; (2) in twin tunnel excavation with EPBM for longitudinal profile, the settlement rate reached its peak value when the shield came to the monitoring section and this peak value continued until the shield passed the monitoring section; (3) every shield affected the other tunnel’s longitudinal surface settlement profile by approximately 35–36.8 %; (4) S A, S B and S C values were found to be 38.0, 35.8 and 26.2 %, respectively for an EPBM, and (5) ensuring good construction quality is a very effective way to control face stability and minimize surface settlement.  相似文献   

11.
This study addresses the phenomenon of the critical scale of fluctuation (SOF) for active lateral force (Pa) in undrained clay when there is a spatial variability in the clay. The phenomenon is significant under shear strength (τf) random fields but is insignificant under unit weight (γ) random fields. It is found that the phenomenon of the critical SOF is connected to the nature of the spatial averaging, which is “line averaging” under τf random fields and is “area averaging” under γ random fields. The former averaging effect (line) is significantly weaker than the latter (area), so the tendency for the critical slip plane to seek for a favorable location is stronger for the τf random field than for the γ random field. Hence, the phenomenon of the critical SOF is more pronounced under τf random fields than under γ random fields. The underlying mechanisms for the phenomenon of the critical SOF will be explored in this paper.  相似文献   

12.
The single-crystal elastic moduli, c ij x, of the olivine (α) and spinel (γ) polymorphs of nickel orthosilicate have been measured at atmospheric pressure and 20° C by Brillouin spectroscopy. The results are (Mbar), Ni2SiO4 olivine: c 11=3.40(2), c 22=2.38(2), c 33=2.53(2), c 44=0.71(1), c 55=0.87(1), c 66=0.78(1), c 12=1.09(2), c 13=1.10(4), c 23=1.13(3), Ni2SiO4 spinel: c 11=3.66(3), c 44=1.06(1), c 12=1.55(3). In comparing these results with extant elasticity data for olivine- and spinel-type compounds we find distinctive elastic characteristics related to crystal structure, and systematic trends due only to compositional variation. For silicate olivines, the longitudinal moduli decrease in the order c 11>c 33>c 22, regardless of composition. The moduli c 55 and c 66 are approximately equal, and greater than c 44. The former relationship is related to differences in polyhedral linkages along the crystallographic axes, whereas the latter may result from rotational freedom of SiO4 tetrahedra in response to different directions of shear. Composition affects elasticity most directly through the relative magnitudes of \(\bar c_{12} > \; = (c_{12} + c_{13} + c_{23} )/3\) and \(\bar c_{44} = (c_{44} + c_{55} + c_{66} )/3\) . When transition-metal cations are six-coordinated by oxygen \(\bar c_{12} > \bar c_{44}\) , and when alkaline-earth cations are six-coordinated \(\bar c_{44} > \bar c_{12}\) . The longitudinal moduli along and normal to the close-packed directions of spinels are similar, reflecting the framework-like arrangement of octahedra. These longitudinal moduli exhibit little compositional dependence upon tetrahedral cations but vary dramatically with octahedral substitution. Our data indicate that tetrahedral cations affect elastic properties more as the oxygen positional parameter, u, decreases. The u parameter is also directly related to elastic anisotropy. While γ-Ni2SiO4 (u=0.244) is elastically isotropic, anisotropy increases rapidly as u approaches a limiting value near 0.27, and may be related to mechanical stability of the spinel structure. The longitudinal wave velocities along close-packed directions in α and γ Ni2SiO4 are equal. Thus, for an α-γ polymorphic pair, the assumptions of elastic isotropy of the γ phase and equal velocities in close-packed directions of α and γ allows the c ij's and shear modulus of a spinel-structure silicate to be estimated from c 11 of the corresponding α phase and the bulk modulus of the γ phase.  相似文献   

13.
Observations of the threshold of movement of loosely packed gravel in a tidal current are described. For gravel with equivalent ‘spherical’ diameters D in the range 0.2 ?D? 5.0cm the critical friction velocity u*c, corresponding to the initiation of sediment transport, is given by u*c=7.0 D0.2. At large values of D within the quoted range, the value u*c is significantly lower than would be obtained by a Shields experiment (u*cD0.5). By comparing our values of u*c with those obtained under well-controlled laboratory conditions, the discrepancy with Shields is shown to be due to the open spacing between, and exposure of, individual pebbles on the seabed. By comparing our results with those from upland gravel streams and flume experiments, it is suggested that Shields assumed an excessively large water depth to particle size ratio as a constraint within which the critical sediment entrainment number 0c is valid.  相似文献   

14.
By using the axisymmetric finite elements static limit analysis formulation, proposed recently by the authors, the stability numbers (γH/co) for an unsupported vertical circular excavation in clays, whose cohesion increases with depth, have been determined under undrained condition; γ = unit weight, H = height of the excavation and co = cohesion along ground surface. The results are obtained for various values of H/b and m; where b = the radius of the excavation and m = a non-dimensional parameter which accounts for the rate of the increase of cohesion with depth. The values of the stability numbers increase continuously both with increases in H/b and m. The results obtained in this study compare well with those available in literature.  相似文献   

15.
This paper develops a risk de-aggregation and system reliability approach to evaluate the slope failure probability, pf, using representative slip surfaces together with MCS. An efficient procedure is developed to strategically select the candidate representative slip surfaces, and a risk de-aggregation approach is proposed to quantify contribution of each candidate representative slip surface to the pf, identify the representative slip surfaces, and determine how many representative slip surfaces are needed for estimating the pf with reasonable accuracy. Risk de-aggregation is performed by collecting the failure samples generated in MCS and analyzing them statistically. The proposed methodology is illustrated through a cohesive soil slope example and validated against results from previous studies. When compared with the previous studies, the proposed approach substantially improves the computational efficiency in probabilistic slope stability analysis. The proposed approach is used to explore the effect of spatial variability on the pf. It is found that, when spatial variability is ignored or perfect correlation assumed, the pf of the whole slope system can be solely attributed to a single representative slip surface. In this case, it is theoretically appropriate to use only one slip surface in the reliability analysis. As the spatial variability becomes growingly significant, the number of representative slip surfaces increases, and all representative slip surfaces (i.e., failure modes) contribute more equally to the overall system risk. The variation of failure modes has substantial effect on the pf, and all representative surfaces have to be incorporated properly in the reliability analysis. The risk de-aggregation and system reliability approach developed in this paper provides a practical and efficient means to incorporate such a variation of failure modes in probabilistic slope stability analysis.  相似文献   

16.
Twin tunnels can be used for many applications. Interaction between two tunnels is an important problem in tunnel engineering that should be studied specially. Numerical investigations are well adapted to field data and numerical methods can be used in design of rock pillar of twin circular tunnels. So far, no relationship has been provided to estimate the minimum stable rock pillar width. In this paper, the interaction between twin circular tunnels has been studied using 2D finite element analysis. To do this, a great number of twin tunnels were modeled in Phase2 software with different conditions of rock mass (RMR value) and depth of tunnel. Models were analyzed and minimum stable rock pillar width was determined. This process was repeated for three different ratios of K (ratio of horizontal stress to vertical stress, 0.5, 1, and 1.5). Finally, according to the linear and nonlinear regression methods, the best merit function was fitted to result of numerical analysis. Then, new approximate formula was proposed to estimate the minimum rock pillar width according to RMR value and depth of twin circular tunnels with different K values. The formulae are very accurate (coefficient of correlation equals to minimum 0.96) that can be used for estimating the minimum rock pillar width of twin circular tunnels.  相似文献   

17.
Vertical plate anchors provide an economical solution to safely resist the large horizontal forces experienced by the foundation of different structures such as bulkheads, sheet piles, retaining walls and so forth. This paper develops a multivariate adaptive regression spline (MARS) model-based approach for the determination of horizontal pullout capacity (P u ) of vertical plate anchors buried in cohesionless soil by utilizing experimental results reported by different researchers. Based on the collection of forty different pullout experimental test results reported in the literature for anchors buried in loose to dense cohesionless soil with an embedment ratio ranges from 1 to 5, a predictive approach for P u of vertical plate anchors has been developed in terms of non-dimensional pullout coefficient (M γq ). The capability of the proposed MARS model for estimating the values of M γq is examined by comparing the results obtained in the present study with those methods available in the literature. Using different statistical error measure criteria, this study indicates that the present approach is efficient in estimating the horizontal pullout capacity of vertical plate anchors as compared to other methods. The sensitivity analysis indicates that the embedment ratio (H/h, where H = embedment depth of anchor, and h = height of anchor) and internal friction angle (?) of soil mass are the two most important parameters for the evaluation of non-dimensional pullout coefficient (M γq ) using the proposed MARS model.  相似文献   

18.
Activity-composition relations are derived for ideal substitutional solid solutions through the Helmholtz free energy expressed in terms of the partition function. For solutions of the type (A, B)uZw involving mixing on one type of atom site, ideal activities of end-member components are expressed by: aAuZw = (XAuZw)u, and aBuZw = (XBuZw)u. With multi-site mixing excluding charge balance restrictions, as in (A, B)αu (C, D)βvZw, the ideal activity of an end-member component such as AuCvZw is calculated as: aAuCvZw = (XαA)u (Xβc)v. These expressions support the ‘ionic solid solution model for the activities of components in ideal solid solutions. Ideal solution models for coupled substitutions involving charge balance are considered using plagioclase as an example. Ideal activity expressions for solid solution of albite and anorthite are derived with and without adherence to the Al avoidance principle. Mixing models involving local electrostatic balance are contrasted with those involving independent, random mixing of Na-Ca and Al-Si. Of several possible ideal solution models for plagioclase, only that specifying complete Al-Si ordering and local electrostatic neutrality yields activities conforming to Raoult's Law.  相似文献   

19.
There are various types of the windblown sediment traps developed for wind tunnel and field studies. One of the main supports expected from these traps is in measuring surface dust concentrations to appropriately derive flux equations. The measurement performance and accuracy of a trap is very important and depends strictly upon the physical characteristics and the behaviors of dust grains with air flows. This paper presents the measurement results of static pressure distribution (SPD) of wind flow around Vaseline-coated slide (VCS) catchers with an aim of finding out whether or not particle trapping efficiency (η) of the VCS is related to the SPD. The SPD was evaluated by a wind reduction coefficient (R c) in a series of wind tunnel experiments with different VCS settings which have different attachment configurations on a pole. Three VCS configurations were considered: a configuration on a circular plastic pole (CPP) and two configurations on wooden square poles (WSP1 and WSP2, respectively). Thus, the primary contribution of this work was to experimentally analyze the effect of the different attachment configurations on the SPD, and the secondary objective was to determine the effect of the SPD on the η. It was shown that spatial correlation and spatial pattern of the R c were different in the surrounding area of each configuration, and ANOVA and DUNCAN tests indicated that η(s) of WSP1, WSP2, and CPP were different at the significant level of P ≤ 0.05 with the mean of 0.94 ± 0.09, 0.63 ± 0.14, and 1.13 ± 0.07, respectively. Additionally, the amount of PM20, PM40, PM60, PM80, and PM100 trapped by the configurations of WSP1, WSP2, and CPP considerably varied depending upon the particular aerodynamic circumstances associated with every configuration.  相似文献   

20.
Swelling deformations leading to convergence of tunnels may result in significant difficulties during the construction, in particular for long term use of tunnels. By extracting an experimental based explicit analytical solution for formulating swelling strains as a function of time and stress, swelling strains are predicted from the beginning of excavation and during the service life of tunnel. Results obtained from the analytical model show a proper agreement with experimental results. This closed-form solution has been implemented within a numerical program using the finite element method for predicting time-dependent swelling strain around tunnels. Evaluating effects of swelling parameters on time-dependent strains and tunnel shape on swelling behavior around the tunnel according to this analytical solution is considered. The ground-support interaction and consequent swelling effect on the induced forces in tunnel lining is considered too. Effect of delay in lining installation on swelling pressure which acting on the lining and its structural integrity, is also evaluated. A MATLAB code of “SRAP” is prepared and applied to calculate all swelling analysis around tunnels based on analytical solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号