首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 175 毫秒
1.
The South China Sea(SCS) is the largest semi-enclosed marginal sea in the North Pacific. Salinity changes in the SCS play an important role in regional and global ocean circulation and the hydrological cycle. However, there are few studies on salinity changes over the SCS due to lack of high-quality and long-term observations. In the past decade, the deployment of floats from the Argo program in the SCS and their accumulated temperature and salinity profiles have made it possible for us to examine salinity changes over the entire basin. In this study,salinity changes were investigated with Argo and underwater glider temperature and salinity observations and gridded temperature–salinity objective analyses(UK Met Office Hadley Centre EN4.2.1 objective analysis and China Argo Real-time Data Center BOA_Argo). The results indicated that the subsurface water in the entire SCS became significantly saltier during 2016–2017. The most significant salinity increase was found during 2016 in the northeastern SCS. The subsurface water in the northeastern SCS exhibited a salinity maximum above 35, which was recorded by three Argo floats during 2015–2016. Such high salinity water was rarely observed and reported prior to the Argo era. Average salinity of 2016–2017 along the 25.5σ_θ–23.5σ_θ isopycnal surfaces in the whole SCS is 0.014-0.130 higher than the climatology. Increases in subsurface salinity started from the northeastern SCS and extended southwestward gradually. Moreover, the subsurface salinity changes, especially in the northern SCS,exhibited a semiannual lead behind the subsurface Luzon Strait transport. Further analysis indicated that the predominance of advection, driven by subsurface Luzon Strait transport, led to salinification along the western boundary of the SCS. In other parts of the SCS, negative wind stress curl trends tended to preserve the high salinity characteristics of the subsurface water.  相似文献   

2.
Recent (2007-2010) research results about ocean’s role in climate variation and change by Chinese scientists are highlighted. This paper reviews a majority contributions by Chinese scientists to the understanding of ocean variability and change. This paper starts with the results about the important role of the tropical Indian Ocean in interannual variation of the Asia summer monsoon, the effect of sea surface temperature (SST) and freshwater flux on climate variability in the Pa- cific, and interannual variability research in other oceans. Then results about ocean dynamic and thermodynamic roles in decadal climate variation are reviewed. Finally, the results about oceanic response to global warming are discussed, again showcasing ocean’s important role in climate.  相似文献   

3.
The present work describes the basic features of super typhoon Meranti(2016) by multiple data sources. We mainly focus on the upper ocean response to Meranti using multiplatform satellites, in situ surface drifter and Argo floats, and compare the results with the widely used idealized wind vortex model and reanalysis datasets.The pre-existing meso-scale eddy provided a favor underlying surface boundary condition and also modulated the upper ocean response to Meranti. Results show that the maximum sea surface cooling was 2.0℃ after Meranti.The satellite surface wind failed to capture the core structure of Meranti as the idealized wind vortex model deduced. According to the observation of sea surface drifters, the near-inertial currents were significantly enhanced during the passage of Meranti. The temperature and salinity profiles from Argo floats revealed both the mixed-layer extension and subsurface upwelling induced by Meranti. The comparison results show that the sea surface temperature and surface wind in the reanalysis datasets differs from those in remote sensing system. Sea surface cooling is similar in both satellite and in situ observation, and sea surface salinity response has a lower correlation with the precipitation rate.  相似文献   

4.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

5.
The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water(AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is probably touched by an Argo float during the float's ascent-descent cycles and is identified by the horizontal salinity gradient between the vertical temperature-salinity profiles. This shows that the transportation of the AAIW may be accompanied with the rich mesoscale characteristics. To derive the spatial length, time, and propagation characteristics of the mesoscale variability of the AAIW, the gridded temperature-salinity dataset ENACT/ENSEMBLE Version 3 constructed on the in-situ observations in the South Pacific since 2005 is used. The Empirical Mode Decomposition method is applied to decompose the isopycnal-averaged salinity anomaly from26.8 σθ–27.4 σθ, where the AAIW mainly resides, into the basin scale and two mesoscale modes. It is found that the first mesoscale mode with the length scale on the order of 1 000 km explains nearly 50% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speeds are slower in the mid-latitude(around 1cm/s) and faster in the low latitude(around 6 cm/s), but with an increasing in the latitude band on 25°–30°S. The second mesoscale mode is of the length scale on the order of 500 km, explaining about 30% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speed keeps nearly unchanged(around 0.5cm/s). These results presented the stronger turbulent motion of the subsurface ocean on the spatial scale, and also described the significant role of Argo program for the better understanding of the deep ocean.  相似文献   

6.
INTRODUCTIONBeing a current of high temperature and high salinity, the Kuroshio carries a large amount ofheat from low latitude tropical ocean to high latitude ocean, and plays an imPOrtant role in theheat balance in East Asia. The variability of the Kurosl,io can affect the climate of East Asia, aswell as the ocean environment and the fishery resources. A lot of studies showed that the variabilitiies of the Kuroshio were related to the global changes especially to the onset of ENSO.…  相似文献   

7.
The influences of tropical cyclone paths and shelf bathymetry on the inducement of extreme sea levels in a regional bay are investigated. A finite volume coastal ocean model(FVCOM) has been configured for the Gulf of Thailand-Sunda Shelf. A parametric wind model is used to drive the FVCOM. The contributions of the tropical cyclone characteristics are determined through a scenario-based study. Validation based on a historical extreme sea level event shows that the model can resolve the oscillation mechanism well. The intensification of severe storm surges in the region highly depends on four factors including phase propagation of the storm surge wave determined by the landfall position, funnel effect caused by locality of the coastline, and shelf bathymetry determined by the state of mean sea level and coastline crossing angle of the storm path. The coexistence of these factors can cause particular regions e.g. the Surat Thani Bay, inner Gulf of Thailand and Ca Mau Peninsular to experience a larger surge magnitude. These areas are found to be highly related to monsoon troughs that develop during the onset and early northeastern monsoon season(October–November).  相似文献   

8.
Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m~2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting.  相似文献   

9.
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.  相似文献   

10.
盐度对变化2014年东北太平洋“暖泡”的作用   总被引:1,自引:0,他引:1  
A significant strong, warm "Blob"(a large circular water body with a positive ocean temperature anomaly)appeared in the Northeast Pacific(NEP) in the boreal winter of 2013–2014, which induced many extreme climate events in the US and Canada. In this study, analyses of the temperature and salinity anomaly variations from the Array for Real-time Geostrophic Oceanography(Argo) data provided insights into the formation of the warm"Blob" over the NEP. The early negative salinity anomaly dominantly contributed to the shallower mixed layer depth(MLD) in the NEP during the period of 2012–2013. Then, the shallower mixed layer trapped more heat in the upper water column and resulted in a warmer sea surface temperature(SST), which enhanced the warm"Blob". The salinity variability contributed to approximately 60% of the shallowing MLD related to the warm"Blob". The salinity anomaly in the warm "Blob" region resulted from a combination of both local and nonlocal effects. The freshened water at the surface played a local role in the MLD anomaly. Interestingly, the MLD anomaly was more dependent on the local subsurface salinity anomaly in the 100–150 m depth range in the NEP.The salinity anomaly in the 50–100 m depth range may be linked to the anomaly in the 100–150 m depth range by vertical advection or mixing. The salinity anomaly in the 100–150 m depth range resulted from the eastward transportation of a subducted water mass that was freshened west of the dateline, which played a nonlocal role.The results suggest that the early salinity anomaly in the NEP related to the warm "Blob" may be a precursor signal of interannual and interdecadal variabilities.  相似文献   

11.
The international Argo program, a global observational array of nearly 4 000 autonomous profiling floats initiated in the late 1990s, which measures the water temperature and salinity of the upper 2 000 m of the global ocean, has revolutionized oceanography. It has been recognized one of the most successful ocean observation systems in the world. Today, the proposed decade action “OneArgo” for building an integrated global, full-depth, and multidisciplinary ocean observing array for beyond 2020 ...  相似文献   

12.
13.

The Indonesian throughflow (ITF) transports a significant amount of warm freshwater from the Pacific to the Indian Ocean, making it critical to the global climate system. This study examines decadal ITF variations using ocean reanalysis data as well as climate model simulations from the Coupled Model Inter-comparison Project Phase 5 (CMIP5). While the observed annual cycle of ITF transport is known to be correlated with the annual cycle of sea surface height (SSH) difference between the Pacific and Indian Oceans, ocean reanalysis data (1959–2015) show that the Pacific Ocean SSH variability controls more than 85% of ITF variation on decadal timescales. In contrast, the Indian Ocean SSH variability contributes less than 15%. While those observed contributions are mostly reproduced in the CMIP5 historical simulations, an analysis of future climate projections shows a 25–30% increase in the Indian Ocean SSH variability to decadal ITF variations and a corresponding decrease in the Pacific contribution. These projected changes in the Indian Ocean SSH variability are associated with a 23% increase in the amplitudes of negative zonal wind stress anomalies over the equatorial Indian Ocean, along with a 12º eastward shift in the center of action in these anomalies. This combined effect of the increased amplitude and eastward shift in the zonal wind stress increases the SSHA variance over the Indian Ocean, increasing its contribution to the ITF variation. The decadal ITF changes discussed in this study will be crucial in understanding the future global climate variability, strongly coupled to Indo-Pacific interactions.

  相似文献   

14.
文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA; generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练, 构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型, 并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能。首先, 利用独立的2016年SODA海表数据作为模型输入进行理想重构试验, 结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰, 与世界海洋图集WOA13资料相比减小约50%和60%。然后, 利用卫星观测的海表信息作为模型输入进行实际应用试验, 并与Argo观测剖面进行比较评估。试验结果表明, 重构模型能有效表征海水温、盐特征, 其中重构温、盐MRMSE分别为0.79℃和0.16‰, 相比WOA气候态减小27%和11%。误差的垂向分布显示, 重构温度RMSE从海表向下迅速增大, 至100m达到峰值1.35℃, 而后又迅速回落,至250m处为0.81℃, 跃层往下不断减小; 重构盐度RMSE基本随深度增大而减小, 误差峰值位于25m附近, 约为0.25‰。此外, Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征。  相似文献   

15.
A retrospective analysis has been done for the hydrophysical fields of the Black Sea for 1993–2012 with the assimilation of undisturbed monthly average profiles of temperature and salinity that were obtained by using an original procedure of joint processing of satellite altimetry and rare hydrological observations. The accuracy of the reconstructed fields of temperature and salinity of the Black Sea is evaluated by comparison with the data of sounding from the hydrological stations and the Argo floats. A comparative analysis is performed for the integral characteristics of the fields of temperature, salinity, and kinetic energy with the same characteristics of the reanalysis for 1992–2012 that assimilated the average annual profiles of temperature and salinity, surface temperature and altimetry level of the sea after being adjusted with respect to climate seasonal variability. The proposed procedure of the reanalysis execution allows a more precise reconstruction of the interannual variability of temperature and salinity stratification in the main pycnocline. The correlation between the annual and seasonal variability of the eddy of the wind friction tangential stress and the average kinetic energy at the levels is revealed.  相似文献   

16.
Sea level variations in the regional seas around Taiwan   总被引:2,自引:0,他引:2  
The patterns and trends of sea level rise in the regional seas around Taiwan have been investigated through the analyses of long-term tide-gauge and satellite altimetry data. Series of tide-gauge data extending over 50 years reveal decadal and interannual variations and spatially-inhomogeneous patterns of generally rising sea level. The East Asia tide-gauge stations around Taiwan show an average trend of +2.4 mm/yr from 1961–2003, which is larger than the reported global rate of +1.8 mm/yr for the same period. These stations also show significantly larger sea level rise rates (+5.7 mm/yr) than global values (+3.1 mm/yr) during the period from 1993–2003. Consistent with the coastal tide-gauge records, satellite altimetry data show similar increasing rates (+5.3 mm/yr) around Taiwan during the same period. Comparisons with temperature anomalies in the upper ocean suggest that thermal expansion and heat advection in the upper layer contribute significantly to the long-term sea level variations in this area with correlations >0.9 for observations after 1992. Thermosteric sea level variations may also explain the interannual and decadal variations of the observed sea level rises around Taiwan. Our analysis also indicates that the altimetry data are only part of a long-term, larger-scale signal. Finally, we have found that a non-linear smoother, LOESS, is more suitable for extracting long-term trends in sea level than the traditional linear regression approach.  相似文献   

17.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   

18.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号