首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
梁发云  陈龙珠  李镜培 《岩土力学》2004,25(Z2):130-133
采用积分变换方法求解弹性半空间中圆形荷载的基本解,按照虚拟桩法建立分析模型,基于圆形荷载的基本解推导出单桩分析的第二类Fredholm积分方程,对其进行数值计算求得桩身各点处的轴力、剪力和位移等,与经典的弹性解答相比,本文的理论更为严密.通过对单桩的荷载传递、沉降特性以及临界桩长等问题的参数分析,得出一些具有工程应用价值的结论.  相似文献   

2.
The traditional theory of soil arching effect was developed on the assumption that stress distribution in the loosening zone is uniform. However, because of the deflection of principal stress' direction, the stress distribution in the loosening zone is actually ununiform. For the evaluation of principal stress axis deflection and stress redistribution, a discrete element method numerical model of trapdoor problem is established for the simulation of soil arching effect. Based on the numerical results, an arc shape of major principal stress trajectory and uniform horizontal stress distribution at the same depth of the loosening zone are adopted. An analytical model is raised to estimate the average loosening earth pressure acting on the trapdoor and stress distribution in the loosening zone at a limit state. In addition, comparison studies are carried out between the predictions of the proposed solutions and discrete element method numerical results as well as available model test results, thereby validating the accuracy of the proposed theoretical model. Both numerical and theoretical results indicate that the vertical stress distribution in the loosening zone is obviously ununiform. The load acting in the middle of loosening zone is transferred toward two sides so that the vertical stress distribution in loosening zone is concave.  相似文献   

3.
The application of cable bolts as a secondary support system is an increasing trend in underground coal mines worldwide. The performances of cable bolts have been evaluated under both axial and shear loading conditions. Two methods of testing cables for shear, single and double shear, have been recognised. This paper examines the shear behaviour of a variety of cable bolts under different pre-tension loads by double shear testing. Plain, spiral and the combination of both cable types were used in this study. The initial axial load and the type of cable bolts are the main factors affecting their shear strength. By increasing the axial pre-tension load, the peak shear load occurs at lower shear displacement. The failure angle due to cable bending across the joint at different pre-tension loads varied between 41° and 49°. This demonstrates that the ratio of axial and perpendicular displacements is almost constant and on average the failure occurs at about 45°. A novel analytical model is proposed to evaluate the shear behaviour of pre-tensioned fully grouted cable bolts subjected to double shearing. Energy and Fourier Series methods were incorporated in the model to simulate the shear behaviour of cable bolts. The comparison of the experimental results with the proposed model shows a good agreement.  相似文献   

4.
双层广义Gibson地基轴对称问题求解   总被引:1,自引:0,他引:1  
假定双层地基土体为弹性、不可压缩、剪切模量随深度线性变化的广义Gibson地基,在两层土体剪切模量表达式常数项与一次项系数之比相同条件下,采用Hankel变换,得到了表面分布轴对称荷载时地基土体应力、位移的积分形式解,讨论了下层深度、剪切模量等对位移的影响。获得的解可退化到半空间情况。  相似文献   

5.
Finite element limit analysis was employed to determine the upper and lower bound solutions of the active failure of a planar trapdoor in non-homogeneous clays that have a linear increase of strength with depth. Influences of cover ratio, dimensionless strength gradient and trapdoor roughness on predicted failure mechanisms and stability factors were determined. In all cases, the exact stability factors were accurately bracketed by computed bound solutions within 1%. Accurate closed-form equations to predict the exact estimates of stability factors, trapdoor pressure and factor of safety using the new proposed factors for the cohesion and strength gradient are presented.  相似文献   

6.
The present study pertains to the development of a mechanical model for predicting the behavior of granular bed‐stone column‐reinforced soft ground. The granular layer that has been placed over the stone column‐reinforced soft soil has been idealized by the Pasternak shear layer. The saturated soft soil has been idealized by the Kelvin–Voigt model to represent its time‐dependent behavior and the stone columns are idealized by stiffer Winkler springs. The nonlinear behavior of the granular fill has been incorporated in this study by assuming a hyperbolic variation of shear stress with shear strain as in one reported literature. Similarly, for soft soil it has also been assumed that load‐settlement variation is hyperbolic in nature. The effect of consolidation of the soft soil due to inclusion of the stone columns has also been included in the model. Plane‐strain conditions are considered for the loading and foundation soil system. The numerical solutions are obtained by a finite difference scheme and the results are presented in a non‐dimensional form. Parametric studies for a uniformly loaded strip footing have been carried out to show the effects of various parameters on the total as well as differential settlement and stress concentration ratio. It has been observed that the presence of granular bed on the top of the stone columns helps to transfer stress from soil to stone columns and reduces maximum as well as differential settlement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
拉压分散型锚索锚固机制及工程应用研究   总被引:1,自引:0,他引:1  
吴曙光  付红梅  张岩岩 《岩土力学》2018,39(6):2155-2163
近年来,结合拉力型、压力型以及荷载分散型锚索特点于一体的拉压分散型锚索在工程中有一定的应用,但内锚固段锚固机制以及设计方法研究尚不成熟。基于Kelvin解,分别推导拉力分散型锚索和压力分散型锚索的内锚固段与周围岩土体之间的剪应力解析解,再根据叠加原理得到了拉压分散型锚索内锚固段剪应力简化计算方法;基于理论成果将拉压分散型锚索应用于工程实例中,分别进行了拉压分散型锚索的基本性能试验及与拉力分散型锚索的预应力损失对比测试。通过算例分析结果表明,单元锚固体的两端剪应力较大,中间较小,剪应力的分布特征与现有文献资料模型试验及数值模拟结果相吻合;根据锚索的基本性能试验结果,按照本文计算方法得到了压力段和拉力段剪应力峰值强度,与已有的研究成果根据岩石单轴抗压强度得到的压力型和拉力型锚杆锚固段剪应力峰值强度结果基本吻合;经对锚索预应力损失测试结果分析及工程的长期监测,拉压分散型锚索在工程应用中荷载传递稳定可靠,工程应用效果良好。  相似文献   

8.
摩擦型岩土材料土拱效应微观机制颗粒流模拟分析   总被引:2,自引:0,他引:2  
韩高孝  宫全美  周顺华 《岩土力学》2013,34(6):1791-1798
利用离散单元计算软件模拟太沙基活动门试验,从散粒体和微观角度研究在摩擦型岩土材料中产生土拱效应时颗粒位移、荷载传递的特点,并进一步研究了颗粒粒径、土体孔隙率、颗粒摩擦系数、活动门宽度以及活动门位移对土拱效应的影响。结果表明:由于土拱的作用,从拱脚往上一定范围内会将拱顶上方的竖向荷载转化成水平荷载并向两侧传递,同时伴随着两侧土体的侧向挤出。伴随活动门的下移,土拱效应在不断调整,增大颗粒粒径、减小孔隙率、增大颗粒摩擦系数、减小活动门宽度,不但可加强土拱效应,而且还能减小土拱效应的影响范围。  相似文献   

9.
张雄  陈胜宏 《岩土力学》2015,36(6):1667-1675
锚固是岩体工程增稳的主要措施,对充分发挥岩体的自承潜力,调节和提高岩体自身强度和自稳能力有着十分重要的作用。由于锚固工程本身的复杂性和多样性,导致目前锚固机制、设计理论以及计算方法都不够完善。现有的锚固段荷载传递解析解存在两大难题,一是没有反映锚固段应力变化过程,随着荷载不断加大,接触面是逐渐被破坏,剪应力的峰值将由端口逐渐向内转移;二是在端口处是一个应力奇异点,难以很好地解决。通过对当前多种锚固段荷载传递解析解的适用性及局限性进行分析归纳,指出应将锚固段应力分布划分为弹性、塑性和破坏3个阶段,在不同的阶段应力分布形式不一样,不能一概而论。在此基础上,基于传递系数,针对沿锚固段剪应力呈非均匀性分布形式,提出了一种能反映这3个阶段变化规律的荷载传递解析公式,获得了锚固段剪应力和轴力的分布规律和影响因素。对各解析解方法求出的临界锚固长度进行了算例对比,证实所提算法是合理和有效的。该算法适用于预应力锚索锚固段工程设计。  相似文献   

10.
Micromechanical aspects of the shear strength of wet granular soils   总被引:1,自引:0,他引:1  
This paper presents a micromechanical model for the analysis of wet granular soils at low saturation (below 30%). The discrete element method is employed to model the solid particles. The capillary water is assumed to be in a pendular state and thus exists in the form of liquid bridges at the particle‐to‐particle contacts. The resulting inter‐particle adhesion is accounted for using the toroidal approximation of the bridge. Hydraulic hysteresis is accounted for based on the possible mechanism of the formation and breakage of the liquid bridges during wetting and drying phases. Shear test computational simulations were conducted at different water contents under relatively low net normal stresses. The results of these simulations suggest that capillary‐induced attractive forces and hydraulic hysteresis play an important role in affecting the shear strength of the soil. These attractive forces produce a tensile stress that contributes to the apparent cohesion of the soil and increases its stiffness. During a drying phase, capillary‐induced tensile stresses, and hence shear strength, tend to be larger than those during a wetting phase. The proposed model appears to capture the macroscopic response of wet granular materials and revealed a number of salient micromechanical mechanisms and response patterns consistent with theoretical considerations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical solutions have been obtained for stresses and displacements in a linear elastic half space due to distributed loads of circular, rectangular and elliptical shapes. The technique primarily involves use of a multi-dimensional numerical integration technique to integrate point load solutions over the distributed loading after discretizing the area into a finite number of elements. Both uniform vertical and shear loads have been considered as well as vertical conical loads and inward shear loads. The technique evolved facilitates the determination of stresses and displacements by the use of mini-computers and is neither as tedious and cumbersome as the use of tables and charts nor as costly as FEM solutions. A detailed comparison has been presented between the results obtained by the numerical solutions and those of the existing analytical solutions wherever they are available. It is found that the agreement between the two is within one per cent for displacements at all depths for the different cases studied. The matching is also good in the case of stresses, except at shallow depths.  相似文献   

12.
Xu  Changjie  Liang  Luju  Chen  Qizhi  Luo  Wenjun  Chen  Y. Frank 《Acta Geotechnica》2019,14(6):2031-2044

Soil arching effect, which relates to the load transfer and stress redistribution in a soil mass, exists commonly in various geotechnical situations. Many researchers have conducted trapdoor tests and theoretical analyses to study the soil arching and its development in recent years. However, little attention has been paid to the interaction between soil arching and seepage flow, both occurring during the tunnelling of a seabed tunnel. To study the influence of the seepage flow on soil arching, a series of two-dimensional trapdoor tests were carried out considering different fill heights and water level heights. Two subvertical slip surfaces were observed during the tests using the PIV technique. It was found that seepage flow increased the displacement of the particles and the effective vertical stress acting at the top of the trapdoor. However, there was little difference in the development of slip surfaces between the seepage condition and the saturated/no-seepage condition. In addition, a nonuniform distribution of vertical stresses at the top of the trapdoor was observed. The effective earth pressure measured along the centreline of the trapdoor was larger than that on the two edges of the trapdoor. But this nonuniformity decreased with an increasing water level height in the test chamber.

  相似文献   

13.
《Engineering Geology》2002,63(1-2):93-98
Two granular materials — alluvial quartzy Zbraslav sand and granular silica gel — were tested with the intention to demonstrate the effect of grain crushing. Stepwise transformation of the compression curve produced by progressive grain crushing was observed. Due to grain crushing, shear strength envelope became nonlinear, and the behaviour was no more physically isomorphous. The shear stress–strain diagrams acquire a typical wavy (garland-like) form, induced by periodic softening and hardening of the soil response. The intensity of grain crushing depends (in addition to stress level, grain resistance and time) on the shear path. In the crushing phase, initial porosity and angularity play a secondary role. Many other behavioural features common with granular soils (like increase in dilatancy with density and grain size) are suppressed. Grain crushing thus produces a qualitatively different feature of geomaterial behaviour with grave practical consequences (dense sand, e.g. starts to behave like loose).  相似文献   

14.
The transfer matrix approach is used to solve the problem of static deformation of an orthotropic multilayered elastic half-space by two-dimensional surface loads. The general problem is decoupled into two independent problems. The antiplane strain problem and the plane strain problem are considered in detail. Integral expressions for displacements and stresses at any point of the medium due to a normal line load and a shear line load, acting parallel to a symmetry axis, are obtained. In the case of a uniform half-space, closed form analytic expressions for displacements and stresses are derived. The procedure developed is quite easy and convenient for numerical computations.  相似文献   

15.
This paper presents a shear load transfer function and an analytical method for estimating the load transfer characteristics of rock-socketed drilled shafts subjected to axial loads. A shear load transfer (f–w) function of rock-socketed drilled shafts is proposed based on the constant normal stiffness (CNS) direct shear tests. It is presented in terms of the borehole roughness and the geological strength index (GSI) so that the structural discontinuities and the surface conditions of the rock mass can be considered. An analytical method that takes into account the coupled soil resistance effects is proposed using a modified Mindlin’s point load solution. Through comparisons with load test results, the proposed methodology is in good agreement with the general trend observed in in situ measurements and represents an improvement in the prediction of the shear behavior of rock-socketed drilled shafts.  相似文献   

16.
The axial stress–strain relations of embedded granular columns encapsulated with flexible reinforcement were evaluated using an analytical procedure based on the cavity expansion method. This proposed method has firstly been verified through an experimental triaxial test on a reinforced sand specimen. A normalized relation was established between the volumetric change and the axial strain of soil to enable the analysis of granular material behavior under a continuous increase in lateral pressure. The analytical results show that the reinforced granular columns embedded in clay behave differently from granular columns subjected only to a constant confining pressure. It is found that reinforcing a column with a sleeve at the top portion will be adequate to prevent the column from bulging and also improve its load carrying capacity. The optimum skirting length that a sleeve can deter a granular column from bulging depends on the characteristics of the in situ soil and the stiffness and yield strength of the sleeve.  相似文献   

17.
This study aims at providing a hybrid calibration framework to estimate Hertz-type contact parameters (particle-scale shear modulus and Poisson ratio) for both two-dimensional and three-dimensional discrete element modelling (DEM). On the basis of statistically isotropic granular packings, a set of analytical formulae between macroscopic material parameters (Young modulus and Poisson ratio) and particle-scale Hertz-type contact parameters for granular systems are derived under small-strain isotropic stress conditions. However, the derived analytical solutions are only estimated values for general models. By viewing each DEM modelling as an implicit mathematical function taking the particle-level parameters as independent variables and employing the derived analytical solutions as the initial input parameters, an automatic iterative scheme is proposed to obtain the calibrated parameters with higher accuracies. Considering highly nonlinear features and discontinuities of the macro-micro relationship in Hertz-based discrete element models, the adaptive moment estimation algorithm is adopted in this study because of its capacity of dealing with noise gradients of cost functions. The proposed method is validated with several numerical cases including randomly distributed monodisperse and polydisperse packings. Noticeable improvements in terms of calibration efficiency and accuracy have been made.  相似文献   

18.
A two‐parameter model has been proposed previously for predicting the response of laterally loaded single piles in homogenous soil. A disadvantage of the model is that at high Poisson's ratio, unreliable results may be obtained. In this paper, a new load transfer approach is developed to simulate the response of laterally loaded single piles embedded in a homogeneous medium, by introducing a rational stress field. The approach can overcome the inherent disadvantage of the two‐parameter model, although developed in a similar way. Generalized solutions for a single pile and the surrounding soil under various pile‐head and base conditions were established and presented in compact forms. With the solutions, a load transfer factor, correlating the displacements of the pile and the soil, was estimated and expressed as a simple equation. Expressions were developed for the modulus of subgrade reaction for a Winkler model as a unique function of the load transfer factor. Simple expressions were developed for estimating critical pile length, maximum bending moment, and the depth at which the maximum moment occurs. All the newly established solutions and/or expressions, using the load transfer factor, offer satisfactory predictions in comparison with the available, more rigorous numerical approaches. The current solutions are applicable to various boundary conditions, and any pile–soil relative stiffness. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
土工格栅与土界面作用特性试验研究   总被引:9,自引:4,他引:5  
刘文白  周健 《岩土力学》2009,30(4):965-970
土工格栅与土的界面摩擦特性指标是加筋土工程设计的关键。通过分析土工格栅与土的界面摩擦作用和进行了直剪摩擦试验和拉拔摩擦试验,测试了两种试验条件的界面摩擦特性。在两种试验条件下,土工格栅加筋土复合体的抗剪强度均有界面摩擦角φsq和界面凝聚力csq,且土工格栅与土相对位移量的不同,其复合体的强度机理有区别。在拉拔摩擦试验中,剪应力峰值强度对应的剪切变形值高于直剪摩擦试验中剪应力峰值强度的剪切变形值5~10倍以上。两种试验均有其适用性,而土与土工格栅的相对位移较小时直剪摩擦试验较能反映实际;土与土工格栅相对位移较大时土与格栅双面均发生相对位移,拉拔摩擦试验更为合适。随法向应力的增大,直剪摩擦和拉拔摩擦试验的剪应力峰值以及剪应力峰值对应的位移均提高。直剪摩擦的剪切速度小,剪应力峰值强度高,且达到峰值强度的剪切位移大;增加剪切速度,剪应力峰值强度降低,且对应的位移也减少,其原因是界面上的孔隙水压力消散和筋材的应力松弛。应根据具体工程的需要选择直剪摩擦试验和拉拔摩擦试验确定设计参数。  相似文献   

20.
Wang  Zi-Yi  Wang  Pei  Yin  Zhen-Yu  Wang  Rui 《Acta Geotechnica》2022,17(10):4277-4296

Particle size strongly influences the shear strength of granular materials. However, previous studies of the particle size effect have focused mainly on the macroscopic behavior of granular materials, neglecting the associated micro-mechanism. In this study, the effect of particle size on the shear strength of uncrushable granular materials in biaxial testing is investigated using the discrete element method (DEM). First, a comprehensive calibration against experimental results is conducted to obtain the DEM parameters for two types of quartz sand. Then, a series of biaxial tests are simulated on sands with parallel particle size distributions to investigate the effect of particle size on macro- and microscopic behaviors. Finally, by adopting the rolling resistance method and the clump method, irregular-shaped particles are simulated to investigate how the particle size effect will be influenced by the particle shape. Simulation results demonstrate that (1) the peak shear strength increases with particle size, whereas the residual shear strength is independent of particle size; (2) the thickness of the shear band increases with the particle size, but its ratio decreases with particle size; (3) the particle size effect can be explained by the increase of friction utilization ratio with particle size; and (4) the particle size effect is more significant in granular materials that consist of particles with higher angularity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号