首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
"干更干、湿更湿"变化范式为理解气候干湿变化提供了一个简化模板。然而,这一范式仅能有效描述受海洋变化影响的全球平均结果。陆地上水资源变化的影响因素众多,存在很大的不确定性,地形复杂地区尤其如此,目前尚未找到高度概括其时空变异规律的方法。本研究总结了全球陆地,尤其是高海拔地区的水资源变化的研究进展,对比了全球气候模式和区域气候模式预估结果的差异,揭示了陆地水资源对变暖的响应机理,并分析了影响陆地水资源变化的主要地表和人类活动因素;提出陆面过程的精确描述以及地表水热状况及其非均匀性的高分辨率精细刻画和模拟,可以为气候系统提供更准确的下边界条件,进而提高地形复杂区域降水空间分布的模拟性能,为陆地尤其是高海拔山区的水资源及其变化研究奠定基础。  相似文献   

2.
Peculiarities of formation and seasonal dynamics of hydrological structure of the Sheksna River Deep of the Rybinsk Reservoir are considered. The contribution of various genetic water types, including run-offs of the town of Cherepovets, to the formation of its water masses is established on the grounds of model calculations. It is shown, that the hydrological structure effects the distribution of hydrobionts in sewage disposal areas. The assessment of the contribution of Cherepovets run-offs to the change of total water salinity of the deep is given.  相似文献   

3.
在分析沈阳近百年特别是近50 a降水变化规律的基础上,研究了沈阳市降水对水资源的影响。结果表明:沈阳市降水量变化决定水资源变化,从1956年以来水资源总量呈减少趋势,且随着年降水量的变化而变化;地下水变化平缓;地表水资源变化速度比降水变化速度快。同时降水量对辽、浑河的自然径流量影响显著,年际变化剧烈;近10 a沈阳降水量呈减少趋势,将加剧沈阳水资源短缺的矛盾。在对气候进行预估的基础上对水资源的发展趋势做了预估。  相似文献   

4.
东亚干旱半干旱区空中水资源研究进展   总被引:4,自引:0,他引:4  
系统回顾了近年来中外对东亚干旱半干旱区空中水资源方面的主要研究进展,主要包括大气水汽、云的分布特征、空中水资源的降水转化率及其影响因子等。东亚干旱半干旱区西部及东部水汽含量较中部高,背风坡水汽含量较迎风坡高,季风区及山脉地区云水资源高于盆地、沙漠上空。20世纪80年代中期以后,东亚干旱半干旱区对流层底部的水汽显著增多,其中夏季增加最为明显。在全球气候变化背景下,中国西北部分地区云水路径总体呈现上升趋势,同时呈现"东正西负"的东西向变化差异以及"北正南负"的反相位特征。大气环流、地表温度、下垫面地表特征等因子通过影响东亚干旱半干旱区的水汽输送及蒸散,进而改变东亚干旱半干旱区空中水资源,空中水资源的改变通过影响辐射收支、不同高度云量及第2次相变产生的云水含量进而对局地温度和降水产生影响。以往研究中,大部分主要针对东亚干旱半干旱区大气中的水汽含量和云平均状态的分布与变化特征,而与降水相关联的空中水资源的变化特征目前仍不清楚,有待系统深入地研究。   相似文献   

5.
Mining operations are vital to sustaining our modern way of life and are often located in areas that have limited water supplies or are at an increased risk of the effects of climate change. However, few studies have considered the interactions between the mining industry and water resources on a global scale. These interactions are often complex and site specific, and so an understanding of the local water contexts of individual mining projects is required before associated risks can be adequately assessed. Here, we address this important issue by providing the first quantitative assessment of the contextual water risks facing the global base metal mining industry, focusing on the location of known copper, lead, zinc and nickel resources.The relative exposure of copper, lead-zinc and nickel resources to water risks were assessed by considering a variety of spatial water indices, with each providing a different perspective of contextual water risks. Provincial data was considered for water criticality (CRIT), supply risk (SR), vulnerability to supply restrictions (VSR) and the environmental implications (EI) of water use. Additionally, watershed or sub-basin scale data for blue water scarcity (BWS), the water stress index (WSI), the available water remaining (AWaRe), basin internal evaporation recycling (BIER) ratios and the water depletion index (WDI) were also considered, as these have particular relevance for life cycle assessment and water footprint studies. All of the indices indicate that global copper resources are more exposed to water risks than lead-zinc or nickel resources, in part due to the large copper endowment of countries such as Chile and Peru that experience high water criticality, stress and scarcity. Copper resources are located in regions where water consumption is more likely to contribute to long-term decreases in water availability and also where evaporation is less likely to re-precipitate in the same drainage basin to cause surface-runoff or groundwater recharge.The global resource datasets were also assessed against regional Köppen-Geiger climate classifications for the observed period 1951–2000 and changes to 2100 using the Intergovernmental Panel on Climate Change’s A1FI, A2, B1 and B2 emission scenarios. The results indicate that regions containing copper resources are also more exposed to likely changes in climate than those containing lead-zinc or nickel resources. Overall, regions containing 27–32% (473–574 Mt Cu) of copper, 17–29% (139–241 Mt Pb + Zn) of lead-zinc and 6–13% (19–39 Mt Ni) of nickel resources may have a major climate re-classification as a result of anthropogenic climate change. A further 15–23% (262–412 Mt) of copper, 23–32% (195–270 Mt) of lead-zinc and 29–32% (84–94 Mt) of nickel are exposed to regional precipitation or temperature sub-classification changes. These climate changes are likely to alter the water balance, water quality and infrastructure risks at mining and mineral processing operations. Effective management of long-term changes to mine site water and climate risks requires the further adoption of anticipatory risk management strategies.  相似文献   

6.
水资源是社会经济发展的重要物质基础,地下水是水资源的重要组成部分,水资源合理开发利用是社会经济可持续发展的重要因素之一.基于《中国统计年鉴》及《中国水资源公报》中2003—2012年用水及供水相关数据,利用EOF展开方法,分析了我国31个省级行政分区用水和水资源利用情况的空间分布及时间演变特征.研究结果表明:全国总用水量不断增加,但增幅有所减小,各地区用水总量变化趋势多样,中东部变化较大,西部变化较小,河北省、浙江省、海南省、青海省和甘肃省与其他地区反相变化;江苏省、浙江省和广东省地下水资源的利用与工业产业协调发展,可作为其他地区的典范;北京市、天津市、河北省、山西省、陕西省、甘肃省和青海省通过调整产业结构,地下水资源利用状况向良好的趋势发展;新疆维吾尔自治区和内蒙古自治区的地下水资源利用现状和趋势不容乐观,应注意增强环保意识,调整产业结构,以求水资源得到协调、可持续的开发和利用.  相似文献   

7.
Adapting water resources management to global climate change   总被引:1,自引:0,他引:1  
This paper provides an overview of the impact of global climate change on water resources management. Changes in precipitation and temperature of the scale predicted by General Circulation Models for a doubled CO2 level will significantly affect annual runoff, runoff variability, and seasonal runoff. These in turn will affect water supply, flood protection, hydropower generation, and environmental resources. In addition, climate change will significantly affect the geomorphic response of the watershed, increasing soil erosion and altering the hydrologic response of the watershed. These geomorphic changes will in turn affect water supply, flood hazard, and riparian ecosystems.Possible water resources management responses are identified. This includes reallocation of water supply from less valuable irrigated agriculture to municipal uses; changes in agricultural methods; increasing incentives for integrated flood management; increasing incentives for watershed management; integration of ecosystem needs in water resources planning; and the need to redesign the operation of existing water projects.  相似文献   

8.
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3,400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24 %, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16 %. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.  相似文献   

9.
Social, economic, and environmental systems can be vulnerable to disruptions in water supplies that are likely to accompany future climate changes. Coupled with the challenges of tightening environmental regulations, population growth, economic development and fiscal constraints water supply systems are being pushed beyond the limits of their design and capacity for maintenance. In this paper we briefly review key economic concepts, various economic measures and metrics, and methods to estimate the economic effects on water resources from water supply changes that could accompany climate change. We survey some of the recent empirical literature that focuses on estimates developed for U.S. watersheds at both national and regional scales. Reported estimates of potential damage and loss associated with climate and water supply changes that we observe are significant, though often the metrics vary and make valid and consistent direct cross-comparisons difficult. Whether in terms of changes in GDP or in terms of estimated changes in economic welfare based on associated changes in economic costs and benefits, both national and regional estimates suggest that governments and organizations incorporate prudent steps to assess vulnerabilities to plausible future water supply and demand scenarios and develop responsive adaptation strategies.  相似文献   

10.
Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling results indicate that climate change will alter both the timing and quantity of streamflow, but understanding how these changes will impact different water users is essential to facilitate adaptation to changing conditions. In order to better understand the vulnerability of four water use sectors to changing streamflow, we conducted a series of semi-structured interviews with representatives of each sector, in which we presented projected changes in streamflow and asked respondents to assess how changing water availability would impact their activities. In the McKenzie River watershed, there are distinct spatial and temporal patterns associated with sensitivity of water resources to climate change. This research illustrates that the implications of changing streamflow vary substantially among different water users, with vulnerabilities being determined in part by the spatial scale and timing of water use and the flexibility of those uses in time and space. Furthermore, institutions within some sectors were found to be better positioned to effectively respond to changes in water resources associated with climate change, while others have substantial barriers to the flexibility needed to manage for new conditions. A clearer understanding of these opportunities and constraints across water use sectors can provide a basis for improving response capacity and potentially reducing vulnerability to changing water resources in the region.  相似文献   

11.
本溪53 a降水特征与水资源分析   总被引:6,自引:3,他引:3  
吉奇  吴英杰  孟庆祥 《气象科学》2009,29(3):390-393
利用本溪1953--2005年月平均气温、降水量资料,依据高桥浩一郎的陆面实际蒸发经验公式,计算出陆面蒸发、蒸发系数和可利用降水系数,得出本溪水资源的变化特征与降水变化特征基本相似。降水量年际变化大,季节分配不均,总体呈下降趋势;春季蒸发损失量大,是易出现干旱的季节;提出缓解和解决水资源缺乏的建议,人工影响天气增加降水量、开源节流节约用水、水污染治理和水土流失控制。  相似文献   

12.
Data of the State Observation Network on the water run-off for the whole observation period and on water levels in the delta of the Volga River for the period of regulated run-off regime (1961–2006) are analyzed. Periods of various water content are revealed and the current tendency of long-term run-off changes is established with the help of difference-integral curve of recovered natural annual run-off. Periods of various degree of man’s impact on the run-off, entering the delta of the Volga River, are marked out. The role of irretrievable anthropogenic loss and the influence of run-off regulation on its intraannual distribution are assessed. Regularities of seasonal and long-term water level changes in the delta of the Volga River are revealed. The run-off regulation effect on the intraannual distribution of water levels is assessed. The influence of the water divider on the redistribution of the run-off and water levels in the delta is shown. The effect of the current increase in the Caspian Sea level on the penetration of the backwater into the delta of the Volga River is revealed.  相似文献   

13.
受气候增暖和人类活动的双重影响,黄河流域的水循环正在发生显著变化,水资源供需矛盾突出。陆地水循环是一个复杂的非线性系统,为清晰认识水循环变化的全貌,并合理高效利用有限的水资源量,需要综合考虑水循环各个要素之间的协同变化机制。同时,在“人类世”背景下,黄河流域水循环研究必须考虑人类活动的影响,主要包括植被变化和人类用水,其中人类用水主体为农业灌溉。自从实施生态恢复工程以来,黄土高原植被覆盖明显改善的同时也引发了对径流、蒸散发、降水、土壤湿度以及地下水的一系列影响,且研究结论还存在一些争议,但黄土高原植被覆盖改善使得该地区蒸散发量增加基本达成共识,大多数研究支持植被改善减少径流的结论。黄河流域的农业灌溉方式主要为大水漫灌,其对地表蒸散发、地表水及地下水多个过程具有重要影响。本文主要针对黄河流域的水循环研究,讨论相关研究进展以及发展方向。  相似文献   

14.
Rainfall patterns influence water usage and revenue from user payments in rural Africa. We explore these dynamics by examining monthly rainfall against 4,888 records of rural piped water revenue in Ghana, Rwanda, and Uganda and quantifying revenue changes over 635 transitions between dry and wet seasons.Results show operators experience revenue variability at regional and intra-seasonal scales. Revenues fall by an average of 30 percent during the wettest months of the year in climate regimes with consistent wet season rainfall. However, seasonally stable revenues are observed in areas where consecutive dry days are common during the wet season, potentially reflecting a dependency on reliable services. We also find changes in tariff level, waterpoint connection type, and payment approach do not consistently prevent or increase seasonal revenue variability.Local revenue generation underpins delivery of drinking water services. Where rainfall patterns remain consistent, piped water operators can expect to encounter seasonal revenue reductions regardless of whether services are provided on or off premises and of how services are paid for. Revenue projections that assume consistent volumetric demand year-round may lead to shortfalls that threaten sustainability and undermine the case for future investment. Intra-seasonal rainfall analysis can enhance rural piped water revenue planning by offering localised insight into demand dynamics and revealing where climate variability may increase dependency on reliable services.  相似文献   

15.
泰安市降水特征与水资源分析   总被引:4,自引:0,他引:4  
分析泰安市1951~2002年降水资料,利用Excel图表分析得出泰安降水分布特征和未来趋势。降水年际变化大,年降水量最大值是最小值的5倍;季节分配极不均匀,分布总体呈下降趋势,特别是1997年以来降水量持续少于平均水平,下降趋势明显。利用1951~2002年月降水量和月气温资料,依据高桥浩一郎的陆面实际蒸发经验公式,计算出陆面蒸发、蒸发系数和可利用降水系数,得出泰安水资源的变化特征与降水变化特征基本相似,春季是泰安最易出现干旱的季节。分析1984~2002年泰安地下水埋深资料,得出地下水位的变化基本随每年降水量的多少而升降,总体呈明显下降趋势,地下水资源相应减少,特别是自1995年以来地下水位逐年下降。提出缓解和解决水资源缺乏的两个有效方法,人工影响天气增加降水量和开源节流节约用水。  相似文献   

16.
Based on the analysis of the surface water transparency (the depth of the Secchi disk disappearance), a seasonal trend of transparency for the entire lake water area was derived for the largest European lake, Lake Ladoga, on an equidistant grid and for limnetic regions. A spatial distribution of monthly mean water transparency of Lake Ladoga is considered from May to October. Climatic trends of transparency are assessed for the period from 1905 to 2003. The climatic trends are analyzed with a linear model used for each month from May to September. The areas with significant negative trends are singled out. A mean trend value is 0.02 m/year. The character of a spatial trend distribution changes depending on the month. In summer, the area with significant trends increases and covers about half of the lake water area. In the spring and in the fall, this area is much smaller and coincides with the southern regions of the lake.  相似文献   

17.
By 2025, it is estimated that around 5 billion people, out of a total population of around 8 billion, will be living in countries experiencing water stress (using more than 20% of their available resources). Climate change has the potential to impose additional pressures in some regions. This paper describes an assessment of the implications of climate change for global hydrological regimes and water resources. It uses climate change scenarios developed from Hadley Centre climate simulations (HadCM2 and HadCM3), and simulates global river flows at a spatial resolution of 0.5×0.5° using a macro-scale hydrological model. Changes in national water resources are calculated, including both internally generated runoff and upstream imports, and compared with national water use estimates developed for the United Nations Comprehensive Assessment of the Freshwater Resources of the World. Although there is variation between scenarios, the results suggest that average annual runoff will increase in high latitudes, in equatorial Africa and Asia, and southeast Asia, and will decrease in mid-latitudes and most subtropical regions. The HadCM3 scenario produces changes in runoff which are often similar to those from the HadCM2 scenarios — but there are important regional differences. The rise in temperature associated with climate change leads to a general reduction in the proportion of precipitation falling as snow, and a consequent reduction in many areas in the duration of snow cover. This has implications for the timing of streamflow in such regions, with a shift from spring snow melt to winter runoff. Under the HadCM2 ensemble mean scenario, the number of people living in countries with water stress would increase by 53 million by 2025 (relative to those who would be affected in the absence of climate change). Under the HadCM3 scenario, the number of people living in countries with water stress would rise by 113 million. However, by 2050 there would be a net reduction in populations in stressed countries under HadCM2 (of around 69 million), but an increase of 56 million under HadCM3. The study also showed that different indications of the impact of climate change on water resource stresses could be obtained using different projections of future water use. The paper emphasises the large range between estimates of “impact”, and also discusses the problems associated with the scale of analysis and the definition of indices of water resource impact.  相似文献   

18.
利用观测气象数据集(CN05.1)、地表水文数据集(VIC-CN05.1)以及大气再分析数据(JRA55)分析了我国西北地区1961-2016年暖季(5-9月)陆地水分收支的长期和年代际变化特征。通过对陆地水分收支(Land Water Availability,LWA)时间序列作Mann-Kendall突变检验,将1961-2016年划分为3个时段进行进一步分析(P1:1961-1978年;P2:1979-2008年;P3:2009-2016年)。主要结论如下:在1961-2016年间西北地区LWA呈上升趋势,区域平均的LWA时间序列具有明显的年代际特征。三个时段的LWA距平百分率分别为-5.45%、-0.46%和13.99%,总体表现为"减少-不变-增加"的特征,尤其是近些年地表水资源增加明显。三个时段的LWA距平百分率空间分布差异显著,尤其在新疆中部、甘肃东部和陕西。西北地区总体上水汽通量输送和垂直速度与降水年代际变化特征基本一致,且区域特征明显。西北地区蒸发受降水、向下长波辐射通量和风速变化影响显著。  相似文献   

19.
20.
Based on the meteorological data of 105 aerological stations during the period of 1960-1969, the monthly average water vapor content (WVC) in air column over the mainland of China is calculated. Charts showing the distribution of mean WVC for January and July and its seasonal variation associated with the atmos-pheric circulation in the lower troposphere over East Asia are also presented. Results obtained from this anal-ysis will contribute to the assessment of water resources, as well as the studies of the formation of rainfall and climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号