首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0.The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate.The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 1019 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (1017–18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one.The magma ascent before the outbreak of Paricutin volcano is interpretable by a model of magma-filled crack formation proposed by Weertman, based on seismic data and other field observations.  相似文献   

2.
The thermal energy balance and the temperature profile of the Hakone volcano are considered quantitatively. Across the Hakone volcano and its surroundings the heat flow values vary from 10–1 to 103 mW/m2, due to thermal conduction and mass flow involving volcanic steam and hot spring discharge. An area with extremely low heat flow is observed in the western side of the caldera showing the presence of percolating meteoric water. The hydrothermal activity is intense in the eastern half of the caldera.The total heat discharge from the high temperature zone (discharge area) of the Hakone volcano amounts to 11.0×107 W. The magmatic steam energy discharge is 95.0×106 W. The thermal energy by redistribution of the terrestrial heat flow by the lateral deep ground water flow is calculated to be 9.00×106 W. For the model having the vertical vent in the volcano's central part up to 1 km depth below the ground surface from a magma reservoir the computed temperature distribution is consistent with the observed values. The depth of the magma reservoir is 7 km below the ground surface and the diameter is 5 km.  相似文献   

3.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   

4.
The 1977–1978 eruption of Usu volcano is discussed from the geophysical standpoint as a classic example of dacite volcanism. The activities of dacitic volcanoes are characterized by persistent earthquake swarms and remarkable crustal deformations due to the high viscosity of the magmas; the former include shocks felt near the volcanoes and the latter accompany formation of lava domes or cryptodomes.The hypocenters of the earthquakes occurring beneath Usu volcano have been located precisely. Their distribution defines an earthquake-free zone which underlies the area of doming within the summit crater. This zone is regarded as occupied by viscous magma. The domings within the summit crater forming the cryptodomes have amounted to about 160 m. In addition to uplift they showed thrusting towards the northeast. As a result, the northeastern foot of the volcano has contracted by about 150 m. The relation between crustal deformation and earthquake occurrence is examined, and it is found that the abrupt domings are accompanied by the larger earthquakes (M = 3–4.3). Both the seismic activity and the ground deformation are shown to have a unique and common energy source.The energy of activities of Usu volcano consists of the explosive type, the deformation type and the seismic type; the second and the third are in parallel with each other in discharges, and both energies are complementary to the explosive energy. The explosive energy and the seismic energy have been calculated for an explosion sequence, and it is concluded that the deformation energy is about 10 times greater than the seismic energy. The discharge rate of the seismic energy and the upheaval rates of the cryptodomes have continued to decrease since the outburst of the eruption, except for a small increase at the end of January 1978. Eruptions are governed not only by the supply of the energies but also by the depth of the magma, which has gradually approached the surface. The last eruption occurred in October 1978; however, the crustal deformations and the earthquake swarms are still proceeding as of January 1980, albeit at a lower rate of activity.  相似文献   

5.
During the 2000 activity of Miyake-jima volcano, Japan, we detected long period seismic signals with initial pulse widths of 1-2 s, accompanied by infrasonic pulses with almost the same pulse widths. The seismic signals were observed from 13 July 2000, a day before the second summit eruption. The occurrences of the seismic signals were intermittent with a gradual increase in their magnitudes and numbers building toward a significant explosive eruption on 18 August. After the eruption, the seismic and infrasonic events ceased. The results of a waveform inversion show that the initial motions were excited by an isotropic inflation source beneath the south edge of the caldera at a depth of 1.4 km. On the other hand, the sources of the infrasonic pulses were located in the summit caldera area. The times at which the infrasonic pulses were emitted at the surface were delayed by about 3 s from the origin times of the seismic events. It is suggested that small isotropic inflations excited seismic waves in the crust and simultaneously caused acoustic waves that traveled in the conduit and produced infrasonic pulses at the crater bottom. Considering the observed time differences and gas temperatures emitted from the vent, the conduit should have been filled with vapor mixed with SO2 gas and volcanic ash. The change of the time differences between the seismic and infrasonic signals suggests that the seismic source became shallower within half a day before the August 18 explosive eruption. We interpret the source process as a fragmentation process of magma in which gas bubbles burst and quickly released part of the pressure that had been sustained by the tensional strength of magma.  相似文献   

6.
Local seismic activity consisting of sharp earthquakes accompanied by thunderous noise was reported starting in late December 1985 around Tacaná volcano (15.13°N, 92.10°W). Portable seismic stations were established in the area by late January 1986 and sampling of the only known thermal spring on the volcano flanks started at the same time. A marked increase in SO42− concentration in the spring water preceded by two months the occurrence of a seismic swarm crisis and a small phreatic explosion. A model involving a crystalline basement fractured by tectonic stresses is proposed to explain the chemical and seismic anomalies, and the consequences on risk of volcanic activity are briefly discussed in terms of the observed behaviour.  相似文献   

7.
Constraining physical parameters of tephra dispersion and deposition from explosive volcanic eruptions is a significant challenge, because of both the complexity of the relationship between tephra distribution and distance from the vent and the difficulties associated with direct and comprehensive real-time observations. Three andesitic subplinian explosions in January 2011 at Shinmoedake volcano, Japan, are used as a case study to validate selected empirical and theoretical models using observations and field data. Tephra volumes are estimated using relationships between dispersal area and tephra thickness or mass/area. A new cubic B-spline interpolation method is also examined. Magma discharge rate is estimated using theoretical plume models incorporating the effect of wind. Results are consistent with observed plume heights (6.4–7.3 km above the vent) and eruption durations. Estimated tephra volumes were 15–34?×?106 m3 for explosions on the afternoon of 26 January and morning of 27 January, and 5.0–7.6?×?106 m3 for the afternoon of 27 January; magma discharge rates were in the range 1–2?×?106 kg/s for all three explosions. Clast dispersal models estimated plume height at 7.1?±?1 km above the vent for each explosion. The three subplinian explosions occurred with approximately 12-h reposes and had similar mass discharge rates and plume heights but decreasing erupted magma volumes and durations.  相似文献   

8.
The May 22, 1915 eruptions of Lassen Peak involved a volcanic blast and the emplacement of three geographically and temporally distinct lahar deposits. The volcanic blast occurred when a Vulcanian explosion at the summit unroofed a shallow magma source, generating an eruption cloud that rose to an estimated height of 9 km above sea level. The blast cloud was probably caused by the collapse of a small portion of the eruption column; absence of a flank vent associated with these eruptions argues against it originating as an explosion that has been directed by vent geometry or location. The volcanic blast devasted 7 km2 of the northeast flank of the volcano, and emplaced a deposit of juvenile tephra and accidental lithic and mineral fragments. Decrease in blast deposit thickness and median grain size with increasing distance from the vent suggests that the blast cloud lost transport competence as it crossed the devastated area. Scanning electron microscope examination of pyroclasts from the blast deposit indicates that the blast cloud was a dry, turbulent suspension that emplaced a thin deposit which cooled rapidly after deposition. Lahar deposits were emplaced primarily in Lost Creek, with minor lahars flowing down gullies on the west, northwest and north flanks of the volcano. The initial lahar was apparently triggered early in the eruption when the blast cloud melted the residual snowpack as it moved down the northeast flank of the peak. The event that triggered the later lahars is enigmatic; the presence of approximately five times more juvenile dacite bombs on the surface of the later lahars suggests that they may have been triggered by a change in eruption style or dynamics.  相似文献   

9.
We analyse the seismic catalogue of the local earthquakes which occurred at Somma-Vesuvius volcano in the past three decades (1972–2000). The seismicity in this period can be described as composed of a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analysis of the b value in the whole period evidences a well-defined pattern, with values of b progressively decreasing, from about 1.8 at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identify a substructure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for most of the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma. The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro-earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit the outlining of any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a generally increasing trend in the seismic activity in the volcanic system and by a significant volumetric component of recent major events, thus posing serious concern for a future evolution towards eruptive activity.  相似文献   

10.
A seismic swarm of more than 7200 earthquakes occurred in Aysen Fjord, southern Chile, from January to June 2007. It started suddenly on 23 January 2007 with an earthquake of magnitude Mw=5.3, followed by five earthquakes with magnitudes increasing from Mw=5.2 to 6.2 within three months. Two large earthquakes of magnitudes Mw=6.1 and 6.2 occurred on 02 and 21 April 2007, respectively. The latest earthquake generated landslides that induced a tsunami within the fjord, killing 10 people. This swarm has been examined using international seismic catalogues and seismicity located with a local seismic network; in particular its double tectonic and volcanic origin has been explored. All the focal mechanisms are compatible with the long- and short-term tectonics of the Liquiñe-Ofqui Fault Zone, a major intra-arc fault system of the Patagonian fjord land. The space, time, and size distributions of these earthquakes, that occurred within an active volcanic area revealed by the presence of several Holocene monogenetic volcanoes, may be explained both by fluid-induced (magma and/or hydrothermal fluids) activity combined with tectonic activity. The co-existence of these two tectonic and volcanic phenomena is a good example of retroactive links between fluids and tectonic fractures.  相似文献   

11.
Santiaguito volcano has shown a continuous slow extrusion of dacite lava since 1922. In the 50 years of activity there have been four periods of abnormally high extrusion rates, interspersed by periods of little magma production. The type of activity shown by the volcano has been varied and crudely cyclic. Dome extrusion periods are accompanied by pyroclastic activity and followed by lava flows. There are now 16 time stratigraphic units delineated on the dome. Activity since 1967 has been especially closely observed. Dome extrusion at the west end of the complex has been accompanied by pyroclastic cruptions and plug dome extrusion at the east end. The eurrent extrusion rate has remained essentially constant since 1967 at about 5×106 m3/yr, far below Santiaguito’s 1922–71 average of 14×106 m3/yr. The active vent at the east end of the volcano (Caliente vent) has been the principal vent of the volcano since the creation of the explosion crater in 1902. After its initial period of dome extrusion (1922–25), the Caliente vent has chiefly produced pyroclastic eruptions as well as at least 95% of the dome’s lumarolic activity, while lateral vents have continued to give rise to lavas. Lava flows at Santiaguito have effective viscosity values of about 106 poises, while dome lavas are significantly more viscous. The differences in viscosity are in part related to volatile content of the lava when it reaches the surface. During dome extrusion, lavas lose their volatiles through pyroclastic activity before they reach the surface. Lava flows at Santiaguito occur when lava reaches the surface with higher volatile content. Obstruction of either the central (pyroclastic) vent or the lateral (dome extrusion) vent or both vents has an important influence on succeeding activity. In June 1972, at the time of this writing, the outbreak of new lava flows at both the Caliente and lateral El Brujo vents has just occurred, resulting from obstruction of pyroclastic activity by a large plug dome at the Caliente vent.  相似文献   

12.
We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May–July 2004. The period selected for the analysis (May 12–31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1–6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S–P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma injection under the northwest flank of Teide volcano, related to a basaltic magma chamber inferred by geological and geophysical studies. The stress changes associated with the injection produced the deep VT cluster. In turn, the occurrence of earthquakes permitted an enhanced supply of fresh magmatic gases toward the surface. This gas flow induced the generation of LP events. The gases permeated the volcanic edifice, producing lubrication of pre-existing fractures and thus favoring the occurrence of VT earthquakes. On May 18, the flow front reached the shallow aquifer located under Las Cañadas caldera. The induced instability constituted the driving mechanism of the observed tremor.  相似文献   

13.
震源断裂规模与震级的定量关系   总被引:2,自引:1,他引:2       下载免费PDF全文
研究震源参数(震源断裂规模)与震级的定量关系必须考虑震级的物理含义。本文利用我国海城地震、唐山地震前后的151个小震(1.5≤M_L≤3.9)和国内外58个浅源的中、强震(4.4≤M_s≤8.2)资料,得到了一组稳定的、互相一致的震源断裂参数与震级M_L和M_S的函数关系。由此讨论了常用震级M_L、M_S与m_b之间的关系。 新的震源参数与震级关系表明,震源断裂规模如断裂长度、面积或错距等与面波震级M_S和近震震级M_L不存在一一对应的比例关系  相似文献   

14.
This paper reports the results of two seismic experiments aimed at determining the wave field of explosion quakes at Stromboli Island (Mediterranean Sea, Southern Italy). The typical Strombolian activity mostly consists of explosive phenomena causing pyroclastic, materials to be emitted together with jets of volcanic gases from one or more craters. Stromboli is an active volcano characterized by persistent seismic activity consisting of explosion quakes that are seismic events associated with the explosive volcanic phenomena. Explosion quakes are short lived seismic events occurring intermittently whose amplitude tends to decrease with distance from the vent. A distinctive feature of explosion quakes is the presence on seismograms of two, often clearly distinct, seismic phases. The first, low-frequency seismic phase (<2 Hz) is in fact usually followed by a high-frequency seismic phase (>3–4 Hz) after one second or more. The first seismic phase of explosion quakes has been shown to be characterized by a nearly radial linear polarization and by an apparent propagation velocity estimated at 600–800 m/s. The second phase is characterized by a more chaotic motion and a lower apparent propagation velocity of 150–450 m/s. The wavefield associated with the first low-frequency seismic phase appears to be generated by a resonating P-wave seismic source accompanying gas explosion and emission of pyroclastic materials. The wavefield associated with the second high-frequency seismic phase of explosion quakes appears to be mainly composed of scattered and converted waves due to the critical topography of the volcano.  相似文献   

15.
长白山天池火山区的震群活动研究   总被引:7,自引:3,他引:4       下载免费PDF全文
2002和2003年夏季流动地震观测揭示,天池火山口附近存在大量的微震活动和一系列震群活动.地震定位结果表明地震主要发生在火山口附近,以震群形式发生的地震全部集中在天池火山口西南部,东北部地震密集区没有观测到震群活动.在夏季以外的其他季节,天池火山区只有一个固定地震台站(CBS)用于地震监测.利用CBS台不同时间的观测纪录,通过波形相关分析发现其他季节的主要震群活动仍然集中在天池西南部.震群的高精度相对定位揭示震源位置沿北西-南东向分布,倾向西南,倾角约80°. 2003年7月13日的震群发生期间,地震震源位置出现从深到浅的迁移现象,同时震源深度较大的地震在不同台站的地震波初动方向几乎全部向上,表明震源具有明显的膨胀分量.考虑到长白山天池火山2002年以来出现明显的地表形变、地球化学异常和谐频地震等现象,我们认为震群活动可能与5 km深度附近存在岩浆热液活动和岩浆增压有关.  相似文献   

16.
The landslide and cataclysmic eruption of Mount St. Helens on May 18, 1980 triggered a sequence of explosive eruptions over the following five months. The volume of explosive products from each of these eruptions decreased uniformly over this period, and the character for each eruption progressed from a fairly continuous eruption lasting more than eight hours on May 18 to a series of short bursts, some of which were spaced 12 hours apart, on October 16–18. The transition in the character of these eruption sequences can be explained by a difference between the magma supply rate and the magma discharge rate from a shallow reservoir.The magma supply rate (MSR) is the rate with which magma is supplied to the level where disruption due to vesiculation occurs. It is determined by dividing the dense-rock-equivalent volume of eruptive products by the total duration of each eruption sequence. The magma discharge rate (MDR) is the rate with which the disrupted magma is discharged through the vent. It is determined by dividing the volume of erupted products by the duration of each explosive burst. The relative magnitude of these two quantities controls the temporal evolution of an explosive event. When MDRMSR the explosive phase of the eruption lasts for several hours as a single continuous event. When MDR>MSR, an eruption is characterized by a series of short explosive bursts at intervals of several minutes to several days. The MSR of the eruptions of 1980 decreased with time from 5500 m' s−1 on May 18 to 7 m3 s−2 on October 16–18 and approximately fits an exponential decay. The MDR for the same events remained approximately constant at 2000 m3 s−1. Each explosive event has been followed by an aftershock-like series of earthquakes located beneath the volcano at depth mostly between 7 and 14 km. The seismic energy released during each of these series is proportional to the corresponding volume of erupted magma. Deformation data between June and November, 1980 indicate a subsidence of the volcanic structure which can be modeled by a volume collapse of 0.25 km3 located at 9 km depth.We propose a model in which magma is supplied from depths of 7–14 km through a narrow conduit during each eruption. It erupts to the surface at a uniform rate during each eruption. The deep seismic activity following each eruption is related to a readjustment and volume decrease in the deep feeding system. The decrease of the MSR over time is explained by an increase in the viscosity of a progressively water-depleted magma. The amount of water necessary to explain the observed decrease of the MSR is of the order of 4.6%.  相似文献   

17.
龙岗火山区尾波Q值的初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于sato单次散射模型,利用2007年5月至2010年2月龙岗火山测震台网记录到的发生在火山区及邻近地区内的41次Mt.≥1.6地震的波形资料,计算了龙岗火山区的尾波Q值,得出尾波Q值与频率的关系为Q(f)=(42.65±7.53)f(0.845 9+0.164 2),具有以低Q值高η值为特征的火山构造活跃地区的尾波...  相似文献   

18.
长白山天池火山地震类型及火山活动性的初步研究   总被引:3,自引:0,他引:3  
2002年以来,长白山天池火山区出现了地震活动增强、地形变加剧和多种地球化学异常等现象,火山口附近发生的多次有感地震在社会上产生了较大影响。本文利用2002年以来的流动地震观测资料,采用频谱分析、时频分析和多台站资料对比的方法,对火山区地震事件的类型进行了分析;对火山活动的危险性进行了初步研究。结果表明,目前天池火山区出现的大量地震活动仍然属于火山构造地震,少量台站地震记录中表现出的低频特征主要是由于局部介质影响造成的,排除了长周期地震引起的可能。尽管长白山天池火山地震活动明最增强,震群活动较为频繁,但仍属于岩浆活动的早期阶段,短期内发生火山喷发的危险性较小。  相似文献   

19.
Seismic discriminants based on the spectral seismogram and spectral magnitude techniques have been tested to discriminate between three events; a nuclear explosion which took place in Lop Nor, China with m b 6.1 and two earthquakes from the closest area with m b 5.5 and 5.3, respectively. The spectral seismogram of the three events shows that the frequency content of the nuclear explosion differs from that of the earthquakes where the P wave is richier in high frequency content in the nuclear explosion than the corresponding earthquakes. It is also observed that the energy decays more rapidly for the nuclear explosion than for the earthquakes. Furthermore, the spectral magnitudes reveal significant differences in the spectra between the nuclear explosion and the two earthquakes. The observed differences appear to be quite enough to provide a reliable discriminant. The estimated stress drop from the magnitude spectra indicates a higher stress drop of the nuclear explosion relative to the earthquakes of the same tectonic region.  相似文献   

20.
Persian territory, which is dividable into major seismotectonic provinces, always suffers from damages of moderate and large earthquakes from ancient era to modern time. Therefore, temporal prediction of earthquake occurrence in this kind of area is an important topic. For this purpose, 628 moderate-large (5.5 ≤MS≤ 8.2) earthquakes occurred in Persia during the period from 400 B.C. to 2015 C.E. were used. Considering the magnitudes of events preceding main shocks and the annual seismic moment release in seismic source areas in the provinces, we calibrated equations predicting inter-event time of occurrence of moderate and large earthquakes (MW>5.5) in Iran. In each source area, inter-event times between moderate and large shocks with magnitudes equal to or larger than a certain cut-off magnitude (MW5.5) were calculated. The inter-event times between the earthquakes were used to compute the relationships using multiple regression technique. Calculated relationships express the basic idea of the time predictable model predicting the occurrence time of the future main shock in a certain seismogen area. However, despite of unavoidable scatter in observations and uncertainties in the results, occurrence times of main shocks during the next years and decades in some source areas in Iran were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号