首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黄河源区多年冻土温度及厚度研究新进展   总被引:5,自引:0,他引:5  
利用新布设的冻土孔及原有冻土资料,分析黄河源区冻土温度和厚度的空间分布。源区实测多年冻土年均地温最低为-1.81℃,冻土最厚74 m,均位于巴颜喀拉山北坡的查拉坪。214国道(K445-K604段)沿线多为高温多年冻土(年均地温>-1℃),但巴山北坡海拔4 520 m、布青山海拔4 300 m以上,年均地温低于-0.5℃。巴山北坡海拔4 610 m、布青山海拔4 420 m以上,年均地温低于-1℃。巴山北坡海拔每升高100 m,年均地温减少0.47~0.75℃,冻土厚度增加16~25 m;纬度向北增加1°,年均地温减少0.85℃,冻土厚度增加20~30 m。  相似文献   

2.
秦岭太白山气温直减率时空差异性研究   总被引:12,自引:3,他引:9  
在评估山地生态系统对气候变化响应的过程中,作为气温要素的重要输入参数,气温直减率(γ)的精确性直接影响到相关科研工作的真实性和可靠性。本文基于秦岭主峰太白山(3771.2 m)11个分布于南北坡和不同海拔的标准气象站点2013-2015年连续3年实测日均温资料和25 m×25 m空间分辨率的DEM数据,研究了太白山气温直减率在不同时间尺度上的变化规律及不同坡向上的空间分布特征。结果表明:① 2013-2015年太白山年均γ北坡均大于南坡,北坡为0.513 ℃/100m,南坡为0.499 ℃/100m;北坡年均γ随海拔变化表现出一定的差异性,而南坡相对稳定。② 年内γ在不同时间尺度上均存在明显差异,且南北坡变化趋势不一致。在季尺度上,γ最大值北坡为夏季,为0.619 ℃/100m,而南坡最大出现在春季,为0.546 ℃/100m,最小值均为冬季,南北坡分别为0.449 ℃/100m和0.390 ℃/100m;春季和夏季,北坡γ均大于南坡,而冬季相反,北坡小于南坡,秋季几乎无差异。在月尺度上,气温相对高的月份γ亦较高,北坡γ变化幅度大于南坡;年始和年末(11-12月、1-2月)北坡γ小于南坡,而5-9月北坡大于南坡,且南北坡γ相差较大。③ 经数据可信度分析,所获得的γ可较为客观地反映太白山气温随海拔变化的规律性,将为山地气温空间分布规律及其生态系统响应等定量研究提供理论基础。  相似文献   

3.
利用实测的念青唐古拉山脉南坡海拔4800 m和5333 m,以及北坡5400 m的土壤温、湿度和地表气温一年的数据,对该地区水热特征作了初步分析,结果表明:地、气温差冬季大夏季小,且相对邻近地区偏大。同时地温与气温有良好相关,但随深度增加,相关系数减小。土壤热力梯度的方向低海拔由下而上,高海拔则相反。土壤湿度高海拔略大于低海拔,干季和湿季分别受冻融过程和印度洋季风降水影响。高海拔冻结期比低海拔长3~4个月,其下层土壤湿度在冻融交替期表现一个剧烈的跃变现象。念青唐古拉山南、北坡海拔相近区域相同层位土壤温度差异在0~8℃之间。南坡土壤温度年平均高于北坡3~4℃。南坡冻结比北坡晚而融化比北坡早,上层土壤湿度南坡小于北坡,而下层土壤湿度南坡大于北坡,南北坡水热过程存在明显差异。  相似文献   

4.
基于太白山内2013—2014年气象站点实测数据和DEM分析太白山南北坡不同时间尺度的气温直减率,并利用辐射传输方程法针对Landsat 8影像数据反演地表温度场,通过窗口差分法推导太白山气温直减率场及其特征。研究表明:1实测法计算太白山年均气温直减率北坡为0.515℃/(100 m),南坡为0.505℃/(100 m);10月直减率北坡为0.505℃/(100 m),南坡为0.480℃/(100 m);春、夏季气温直减率较大,北坡大于南坡,而冬季较小,北坡小于南坡。2采用辐射传输方程法针对Landsat 8 TIRS 10反演地表温度具有较高置信度,获取10月北坡气温直减率为0.611℃/(100 m),南坡为0.502℃/(100 m)。3气温直减率在山脊和山谷附近表现出高直减率条带;海拔对太白山气温直减率的影响高于坡向,高、中、低海拔区气温直减率分别为0.913℃/(100 m)、0.471℃/(100m)、0.755℃/(100 m);坡向对气温直减率分布的影响表现为随阳坡至阴坡而逐渐变大,依次为0.515℃/(100m)、0.541℃/(100 m)、0.617℃/(100 m)。  相似文献   

5.
岷江上游雨季南北坡小气候特征比较   总被引:9,自引:5,他引:9  
利用岷江上游茂县大沟不同坡向的小气候观测资料,探讨了该地区地雨季的太阳辐射、气温、地表温、水汽压、相对湿度、风速等小气候要素的南北坡特征及其与谷底的差异。通过比较分析得出:在雨季南坡的太阳辐射量大于北坡和谷底;南北坡气温、水汽压、相对湿度在昼间有一定差异;北坡气温略高于南坡;气温垂直递减率南坡(O.71℃/100m)大于北坡(O.61℃/100m)。水汽压为北坡<南坡<谷底;而相对湿度为谷底<北坡<南坡,北坡和谷底的太阳辐射、气温、地表温、水汽压最大值比南坡早出现1h。南北坡风速均大于谷底,而南坡风速又大于北坡。由此可见,岷江上游地区即使在雨季,山地对局地气候仍有一定影响。  相似文献   

6.
气候变化对中国多年冻土和寒区环境的影响   总被引:93,自引:7,他引:86  
中国的多年冻土总面积为 2 .1 5× 1 0 6 km2 ,主要分布在高海拔地区。 40年来 ,随寒区经济的快速发展和资源、环境问题的日益突出 ,冻土和寒区气候变化研究获得了长足的进展。我国大部分地区的多年冻土退缩趋势明显。 2 1世纪 ,受气候变暖和人为活动的共同影响 ,青藏高原和东北地区北部多年冻土将大幅退缩。冻土广泛退缩将对中国的寒区经济和环境产生重要影响。但是 ,冻土退缩及其对环境的影响还存在很大的不确定性。  相似文献   

7.
龚婷婷  高冰  吉子晨  曹慧宇  张蕴灵 《地理科学》2022,42(10):1848-1856
基于MODIS温度数据,采用TTOP模型和Stefan公式模拟了青藏高原地区的冻土分布并计算了活动层厚度,并与地面观测结果进行了对比。结果表明:2003—2019年青藏高原多年冻土面积为1.01×106 km2;多年冻土活动层厚度区域平均值为1.79 m, 活动层厚度区域平均的变化率为3.67 cm/10a,且草甸地区的变化率明显大于草原地区,5100~5300 m高程带的活动层厚度变化速率最大。  相似文献   

8.
1960-2013年秦岭陕西段南北坡极端气温变化空间差异   总被引:1,自引:0,他引:1  
张扬  白红英  苏凯  黄晓月  孟清  郭少壮 《地理学报》2018,73(7):1296-1308
作为气候变化研究的重要内容,极端气温研究对生态环境保护和灾害事件预警具有重要意义。根据1960-2013年秦岭32个气象站点的逐日气温资料,采用RClimDex软件、克里格插值法、线性倾向估计法和相关性分析法,研究秦岭山地陕西段(简称秦岭)气温的空间分布特点,以及极端气温的空间变化特征。结果表明:① 1960-2013年秦岭年平均气温、年最高气温和年最低气温分别为10.48 ℃、16.44 ℃和6.18 ℃;秦岭北坡气温在低海拔区高于南坡,在中、高海拔区低于南坡;南北坡的气温差值在低海拔区域最小,中海拔区域最大。② 秦岭极端气温的频率、强度和持续时间均表现为增加趋势,极端气温变化的敏感区域位于南坡的镇安、柞水和北坡的周至、户县。③ 秦岭北坡极端气温频率的变化更明显,秦岭南坡极端气温强度和持续时间的变化更明显;且北坡的增温主要发生在夜间,南坡的增温主要发生在白昼。④ 秦岭极端气温的变暖速率随海拔升高而增大,高海拔区域极端气温频率和强度的变化最明显,中海拔区域极端气温持续时间的变化最明显。  相似文献   

9.
未来气候变暖情形下青藏高原多年冻土分布初探   总被引:4,自引:0,他引:4  
基于未来温室气体中等排放情景下气候模式给出的气候预测结果的高分辨率降尺度分析结果,运用两种方法(年均温法和高程模型法)模拟了1980-1999,2030-2049和2080-2099年3个时段青藏高原多年冻土分布.结果表明,以年均地温-1℃作为多年冻土划分依据的年均温法模拟的目前(1980-1999年)高原多年冻土面积为127.99万km2,与世界数据中心给出的青藏高原现代多年冻土面积为129.12万km2的估算接近(误差率仅为0.86%);到本世纪中期(2030-2049年),高原多年冻土面积减少为87.26万km2,退化率达到31.82%;而到本世纪末(2080-2099年),高原多年冻土面积只有69.25万km2,较目前将退化45.89%.不同高度带的对比分析还发现,与高原及其邻近地区年均气温的升高一般随海拔高度而增加的趋势相反,未来高原多年冻土的退化率将随着海拔高度增加而降低.在全球变暖过程中的冻土退化,特别是高原东南部冻土向西北部的逐步退缩,对高原冻土区工程稳定性的影响应引起我们的足够重视.  相似文献   

10.
青藏高原念青唐古拉峰地区气候特征初步分析   总被引:7,自引:1,他引:7  
利用青藏高原念青唐古拉峰地区扎当冰川垭口(30°28.07′N,90°39.03′E,5 800 m a.s.l.)、南坡(30°22.87′N,90°40.36′E,5 100 m a.s.l.)和北坡(30°29.06′N,90°37.46′E,5 400 m a.s.l.)三台自动气象站一年的近地层观测资料,分析了该地区温度、湿度、风速风向和辐射等气象要素的季节变化特征,探讨了南、北坡局地气候差异形成的原因。结果表明:垭口、南坡、北坡年平均气温分别为-6.9℃、-1.1℃和-3.4℃;北坡(扎当冰川)消融期气温直减率大,年平均值为0.87℃/100 m;海拔越高,气温日较差、气温直减率波动越大;垭口相对湿度最大,饱和水汽压最小;该地区相对湿度与海拔呈正向关系,而饱和水汽压与之呈反向关系;该地区局地环流特征明显;总辐射5月出现最大值,南坡辐射比北坡小,与大气所含水汽、天空云量、下垫面性质差异等因素有关。  相似文献   

11.
气候变化对中国多年冻土和寒区环境的影响   总被引:5,自引:0,他引:5  
中国的多年冻土总面积为2.15×106km2,主要分布在高海拔地区.40年来,随寒区经济的快速发展和资源、环境问题的日益突出,冻土和寒区气候变化研究获得了长足的进展.我国大部分地区的多年冻土退缩趋势明显.21世纪,受气候变暖和人为活动的共同影响,青藏高原和东北地区北部多年冻土将大幅退缩.冻土广泛退缩将对中国的寒区经济和环境产生重要影响.但是,冻土退缩及其对环境的影响还存在很大的不确定性.  相似文献   

12.
基于积雪面积逐日无云遥感产品和气象观测资料,分析了2001—2020年三江源地区积雪日数的水平、垂直分布特征及变化规律,并对积雪日数与气温和降水量进行了相关分析。结果表明:(1) 2001—2020年三江源地区积雪日数呈西高东低,高海拔山脉大于盆地平原的分布格局,高海拔山脉地区积雪日数均值普遍大于200 d,85.48%的区域积雪日数呈波动增加趋势,显著增加区域占比为16.59%,平均增加速率为0.98 d·a-1。(2) 积雪日数及其变化趋势存在明显的海拔和坡向分异,积雪日数随海拔上升呈指数型增加,较低海拔(<3.0 km)区域积雪日数少、呈减少趋势且减少速率随海拔高度上升而加快;高海拔区域积雪日数较多且呈增多趋势,但海拔大于4.4 km后积雪日数增多速率随海拔上升而减缓,且5.5~6.0 km地区积雪日数呈减少趋势,高海拔地区积雪日数存在一定程度的“海拔依赖性”。积雪日数北坡大于南坡、西坡大于东坡,西北坡积雪日数最多,为78.30 d,不同坡向的积雪日数均呈增多趋势,其中西坡的增多速率最快,达1.04 d·a-1。(3) 近20 a三江源地区明显的“暖湿化”气候特征是影响积雪日数变化的主要原因,其中降水量是主要驱动因素,积雪日数增多与降水量增加密切相关,且高海拔地区积雪日数对降水量的依赖性更强。  相似文献   

13.
伊犁山地不同海拔土壤有机碳的分布   总被引:11,自引:0,他引:11  
以乌孙山北坡、科古琴山南坡为例,分析伊犁山地南北坡土壤有机碳的分布特征和影响因素。结果表明:①0-50 cm范围内,高寒草甸、草甸草原土壤有机碳含量较高,荒漠草原土壤有机碳含量最低。土壤有机碳含量均随土壤深度的增加而降低,高寒草甸随土壤深度的增加土壤有机碳下降幅度最大;②伊犁山地土壤腐殖化程度高,氮矿化能力强。大部分海拔的土壤碳氮比随土壤深度的增加而减少。河谷南坡碳氮比降低速率要大于河谷北坡。③土壤有机碳与全氮、全磷以及土壤含水率表现出良好的正相关性;与pH值表现出较好的负相关性,特别是20-50 cm处。植被类型分布和人类活动影响对土壤有机碳垂直变化影响显著。  相似文献   

14.
刘侦海  王绍强  陈斌 《地理学报》2021,76(5):1231-1244
中蒙俄经济走廊东段位于欧亚大陆多年冻土区东南缘及森林线南界接近区,冻土及生态环境脆弱。本文基于MERRA-Land陆面模式离线运行产品分析了中蒙俄经济走廊东段2000—2015年间冻土冻融的时空变化模式,以及冻土变化对返青期和全年不同阶段植被生长状态的影响。研究表明:2000—2015年间研究区多年冻土及季节冻土均持续退化,时间上主要表现为冻土提前解冻、延迟冻结;空间上主要表现为多年冻土南界的多年冻土退化和季节冻土下限抬升,及连续多年冻土南界的活动层加厚。解冻始日是森林地区植被返青的主控要素,林下冻土解冻对土壤含水量的增加及沼泽湿地的隔热蓄水功能影响了森林地区植被的生长。但随着多年冻土南界森林及林下泥炭地演替为草甸和农田,多年冻土退化,进一步促进林下沼泽湿地的消失。探讨冻土退化与生态环境之间的协同关系,有助于识别气候变暖和人类活动叠加影响下的冻土退化脆弱区以及生态环境敏感区。  相似文献   

15.
疏勒河源区的多年冻土   总被引:11,自引:0,他引:11  
疏勒河流域地处祁连山西段,气候极端干旱.2008年6月在疏勒河源区海拔3729-3890 m的不同地面、地形条件下在5个点上布设了10眼钻孔进行钻探勘察,并布设测温管定期监测地温.根据勘察和测温资料,确定了疏勒河流域内多年冻土下界高程在3750 m左右,查明河谷中松散地层以冲积层为主,多为粗颗粒土,多年冻土含冰量普遍较低.局地因素对多年冻土状态影响明显.其中坡度差异可以使地温相差0.5℃.坡向的差异可以使地温相差达1.0℃;地层水分含量对浅层地温的影响甚至超过坡向的影响;地面状态的差异,造成地温、活动层厚度等方面的显著差异.与祁连山中东部地区相比,疏勒河源区多年冻土几乎没有生态过程的影响,多年冻土形成和保存受气候驱动,基本上代表了一类干旱气候条件下的多年冻土特征.  相似文献   

16.
以野外勘探、室内理论分析与建模为主要研究方法,以数字高程模型(GDEM)和实测数据为基础进行统计分析,发现坡向对多年冻土分布具有重要影响。针对青藏高原温泉区域地形的复杂性,基于分区的方法将研究区分为平原区和山区两个地形区。对于平原区来说,考虑到苦海湖泊对多年冻土的影响,将苦海滩地单独划出并采用专家知识完成冻土制图,其余平原区采用建立的地温模型进行冻土制图;对于山区来说,通过定量化研究坡向对冻土地温的影响建立了基于坡向调整作用下的地温模型,应用此模型完成了山区的冻土分布图。以地温作为冻土类型划分的依据,分析了研究区域冻土的空间分布与特征,结果表明:多年冻土的分布面积为1 681.4km2,占整个区域的66.7%,其中,过渡型和亚稳定型多年冻土为主要多年冻土类型,两者占整个研究区域的50.8%,其次为不稳定型多年冻土(11.4%),稳定型和极稳定型多年冻土的面积比例相对较小(4.4%和0.2%)。从空间分布格局来看,冻土分布具有明显的垂直分带特征,随着海拔高度的升高,冻土地温逐渐降低,冻土类型依次经历季节冻土-不稳定型多年冻土-过渡型多年冻土-亚稳定型多年冻土-稳定型多年冻土-极稳定型多年冻土的变化。  相似文献   

17.
研究不同地形下的山地气候变化对于植被生长、不同动物种群的生存习性及对气候的应激性有重要意义。本文基于陕西秦岭地区1959—2016年32个国家站的日气温和降水资料,采用Anusplin插值法、标准化降水蒸散指数(SPEI)、稳健回归和Theil-sen回归法等方法分析了山区地形对气候变化的影响。结论如下:(1)58年来秦岭四个坡向上年均温度随着海拔的升高呈现显著下降趋势,年降水随着海拔的升高呈现不同程度的上升趋势。温度随坡度的增加表现出下降趋势;除秦岭南坡西段外,降水随着坡度的增加呈现出上升趋势,但均不显著。(2)年尺度上,秦岭山地南坡和南坡东段的气温呈显著增温趋势,南坡西段和北坡呈不显著增温趋势;四个方向上的降水均呈显著下降趋势。秦岭山地四个方向上的干湿等级为正常,北坡和南坡西段的干湿状况一致,58年年均SPEI均为0.07,南坡东段较暖湿(0.08),南坡较暖干(0.05)。(3)季节尺度上,秦岭山地四个方向上除了夏季外,其他季节的气温均表现出不同程度的升温趋势,降水均呈下降趋势。秦岭四个方向上四季干湿变化属于正常等级。秦岭北坡出现春季干暖化趋势;南坡秋季较暖湿;南坡东段和西段的冬季呈暖湿化特征;南坡西段夏季呈现暖干化特征。  相似文献   

18.
豫西山地植被NDVI及其气候响应的多维变化   总被引:3,自引:1,他引:2  
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在1100 m海拔区恢复概率最高,在1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

19.
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在<1100 m海拔区恢复概率最高,在>1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

20.
本文运用多种方法对托木尔峰自然保护区1961—2015年气温、降水、径流变化及其影响因子进行分析,旨在为当地水资源合理利用提供理论支撑。结果显示:55 a来气温升高1.5℃,其中保护区北坡中山带上升最高为1.7℃;春夏秋冬季分别升高了1.2℃、1.1℃、1.7℃和1.9℃,秋冬季对增温的贡献率较大;在春季南坡高山带增温最高为1.4℃、夏秋季北坡中山带增温最高为1.8℃和2.3℃、冬季南坡低山带增温最高为2.8℃;降水年增率1.27 mm,其中南坡中山带年增率最大为2.38 mm;四季年增率分别为春季0.15 mm、夏季0.55 mm、秋季0.41 mm、冬季0.13 mm,夏秋季对增湿贡献率较大;春季南坡高山带年增率最大为0.32 mm、夏秋季南坡中山带年增率最大为1.03 mm和0.77 mm、冬季北坡中山带年增率最大为0.22 mm;库玛拉克河径流量年增率为0.25×108m3,台兰河径流量年增率为0.01×108m3,保护区气温和降水的变化是造成径流变化的主要因素,尤其是春季降水和夏季气温的影响最为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号