首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural, forestry-impacted and natural catchments are all vectors of nutrient loading in the Nordic countries. Here, we present concentrations and fluxes of total nitrogen (totN) and phosphorus (totP) from 69 Nordic headwater catchments (Denmark: 12, Finland:18, Norway:17, Sweden:22) between 2000 and 2018. Catchments span the range of Nordic climatic and environmental conditions and include natural sites and sites impacted by agricultural and forest management. Concentrations and fluxes of totN and totP were highest in agricultural catchments, intermediate in forestry-impacted and lowest in natural catchments, and were positively related %agricultural land cover and summer temperature. Summer temperature may be a proxy for terrestrial productivity, while %agricultural land cover might be a proxy for catchment nutrient inputs. A regional trend analysis showed significant declines in N concentrations and export across agricultural (−15 μg totN L−1 year−1) and natural (−0.4 μg NO3-N L−1 year−1) catchments, but individual sites displayed few long-term trends in concentrations (totN: 22%, totP: 25%) or export (totN: 6%, totP: 9%). Forestry-impacted sites had a significant decline in totP (−0.1 μg P L−1 year−1). A small but significant increase in totP fluxes (+0.4 kg P km−2 year−1) from agricultural catchments was found, and countries showed contrasting patterns. Trends in annual concentrations and fluxes of totP and totN could not be explained in a straightforward way by changes in runoff or climate. Explanations for the totN decline include national mitigation measures in agriculture international policy to reduced air pollution and, possibly, large-scale increases in forest growth. Mitigation to reduce phosphorus appears to be more challenging than for nitrogen. If the green shift entails intensification of agricultural and forest production, new challenges for protection of water quality will emerge possible exacerbated by climate change. Further analysis of headwater totN and totP export should include seasonal trends, aquatic nutrient species and a focus on catchment nutrient inputs.  相似文献   

2.
3.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Research on suspended sediment transport in the catchments of the Old Mill reservoir and Slapton Lower Ley, South Devon, has attempted to discriminate changing catchment sources on the basis of downcore variations in the mineral magnetic properties of lake, reservoir and floodplain sediments. Here, we examine these downcore variations and also explore the variability in catchment sources and the influence of topographic controls on mineral magnetic signatures of topsoils and subsoils. Particle size controls on the mineral magnetic signatures are explored by an analysis of a fractionated sediment sample, whilst the possible impact of diagenesis is assessed by an examination of the Mn profiles in the lake and reservoir sediments. From this analysis it is evident that the mineral magnetic signatures of well sorted floodplain deposits are more likely to reflect the particle size composition of the transported material. By contrast, the mineral magnetic record in the sediment of Slapton Ley appears to be most strongly influenced by dissolution of magnetic minerals. The sediment of the Old Mill reservoir provides the only suitable record for the application of a simple mixing model which is developed in order to quantify changes in the relative contribution of topsoil and subsoil through time. The research has important implications for attempting to reconstruct sediment sources in highly eutrophic lakes and emphasizes the uncertainty in the application of simple mixing models. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The relative contribution of forest roads to total catchment exports of suspended sediment, phosphorus, and nitrogen was estimated for a 13 451 ha forested catchment in southeastern Australia. Instrumentation was installed for 1 year to quantify total in‐stream exports of suspended sediment, phosphorus, and nitrogen. In addition, a total of 101 road–stream crossings were mapped and characterized in detail within the catchment to identify the properties of the road section where the road network and the stream network intersect. Sediment and nutrient generation rates from different forest road types within the catchment were quantified using permanent instrumentation and rainfall simulation. Sediment and nutrient generation rates, mapped stream crossing information, traffic data and annual rainfall data were used to estimate annual loads of sediment, phosphorus, and nitrogen from each stream crossing in the catchment. The annual sum of these loads was compared with the measured total catchment exports to estimate the proportional contribution of loads from roads within the catchment. The results indicated that 3·15 ha of near‐stream unsealed road surface with an average slope of 8·4% delivered an estimated 50 t of the 1142 t of total suspended sediment exported from the catchment, or about 4·4% of the total sediment load from the forest. Stream discharge over this period was 69 573 Ml. The unsealed road network delivered an estimated maximum of 22 kg of the 1244 kg of total phosphorus from the catchment, or less than 1·8% of the total load from the forest. The average sediment and phosphorous load per crossing was estimated at 0·5 t (standard deviation 1·0 t) and 0·22 kg (standard deviation 0·30 kg) respectively. The lower proportional contribution of total phosphorus resulted from a low ratio of total phosphorus to total suspended sediment for the road‐derived sediment. The unsealed road network delivered approximately 33 kg of the 20 163 kg of total nitrogen, about 0·16% of the total load of nitrogen from the forest. The data indicate that, in this catchment, improvement of stream crossings would yield only small benefits in terms of net catchment exports of total suspended sediment and total phosphorus, and no benefit in terms of total nitrogen. These results are for a catchment with minimal road‐related mass movement, and extrapolation of these findings to the broader forested estate requires further research. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Clearing of native vegetation and replacement with cropping and grazing systems has increased nutrient exports to the Great Barrier Reef (GBR) to a level many times the natural rate. We present a technique for modelling nutrient transport, based on material budgets of river systems, and use it to identify the patterns and sources of nutrients exported. The outputs of the model can then be used to help prioritise catchment areas and land uses for management and assess various management options. Hillslope erosion is the largest source of particulate nutrients because of its dominance as a sediment source and the higher nutrient concentrations on surface soils. Dissolved nutrient fractions contribute 30% of total nitrogen and 15% of total phosphorus inputs. Spatial patterns show the elevated dissolved inorganic nitrogen export in the wetter catchments, and the dominance of particulate N and P from soil erosion in coastal areas. This study has identified catchments with high levels of contribution to exports and targeting these should be a priority.  相似文献   

8.
Nitrogen and phosphorus concentrations were measured and exports were calculated in the subtropical Richmond River catchment between July 1994 and June 1996. A stratified sampling approach was adopted owing to the extreme and rapid changes in riverine discharge, which varied by up to 10 000 times over the study period. Nutrient concentrations were lowest during baseflow. During storm discharge, dissolve inorganic and organic and particulate nitrogen and phosphorus concentrations increased two‐ to five fold, and followed hysteresis patterns that were attributed to the integration and/or depletion of catchment nutrient sources during an event. Dissolved organic nitrogen and particulate phosphorus were the dominant nutrient forms. Land use and antecedent conditions had a large influence on nutrient concentrations and exports. During the 1995–96 year (slightly above the mean annual discharge) 96% of nitrogen and 98% of phosphorus loads were transported in less than 6% of the time. When averaged across the catchment, monthly riverine nutrient loads varied by up to 1061‐fold during the study and exports were approximately four‐fold greater during the second year relative to the first. The subtropical Richmond River catchment has greater intra‐ and potential interannual variability in nutrient loads and exports when compared with temperate catchments from other parts of the world. It is suggested that in tropical and subtropical Australian catchments with large intra‐ and interannual variation in discharge, the need for parameterizing the antecedent conditions, such as the degree of nutrient storage, may make it difficult to model spatial and temporal (short time‐scale) nutrient exports. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Nutrient loadings in many river catchments continue to increase due to rapid expansion of agriculture, urban and industrial development, and population growth. Nutrient enrichment of water bodies has intensified eutrophication which degrades water quality and ecosystem health. In this study, we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment using a novel approach to analyse nutrient time series. Seasonal analysis of trends at each of the water quality stations was performed to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-term relationships of nutrients with anthropogenic changes in the catchment. Although it was found that seasonal and historical variability of nutrient load trends is mainly determined by streamflow regime changes, there is evidence that increases in nitrogen concentration can also be attributed to anthropogenic changes.  相似文献   

10.
With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995-2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu, occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31 % and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.  相似文献   

11.
With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995:_2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu, occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31% and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.  相似文献   

12.
Mogan Lake is the largest recreational area near Ankara, which is the capital city of Turkey. Increased macrophyte growth in the water body and the present levels of urban development within the catchment are reflected in declining water quality and aesthetic deterioation. A study of the water quality of the lake was undertaken to quantify the variation of phosphorus, nitrogen, and chlorophyll-a concentrations during ice-free seasons from 1992 to 1994. Its total phosphorus and chlorophyll-a concentrations indicate a meso-eutrophic status. The total phosphorus budget of Mogan Lake was measured for a period of 22 months. The estimation of nutrient loading using Dillon-Rigler nutrient budget shows that an artificial load caused too high phosphorus inputs. The management implications of phosphorus loading and budget are discussed.  相似文献   

13.
Abstract

Knowledge of the amount of nutrient input to receiving waters by their catchments is often mandatory for water managers. In this study, we estimated the export of phosphorus from a Mediterranean catchment into a downstream reservoir under the constraint of limited sampling data availability. We calibrated the physically- based catchment-scale model ZIN-Sed 2D to a regionalized flow duration curve and scarce event mean sampling data of dissolved and particulate phosphorus. The model results were further confirmed by discussion of soft data from the literature. Our modelling approach differs from commonly applied models by using a time step of less than 1 day, and a Langmuir isotherm for phosphorus sorption instead of the linear isotherm. The successful model application showed that this combination of methods is applicable under data-scarce conditions and the long-term phosphorus export from the study site is below average for this region.

Editor D. Koutsoyiannis; Associate editor T. Okruszko

Citation Gassmann, M., Brito, D., and Olsson, O., 2013. Estimation of phosphorus export from a Mediterranean agricultural catchment with scarce data. Hydrological Sciences Journal, 59 (1), 221–233.  相似文献   

14.
The contribution from agricultural catchments to stream nitrogen and phosphorus concentrations was assessed by evaluation of the chemical composition of these nutrients in agricultural runoff for both surface and subsurface flow pathways. A range of land uses (grazed and ungrazed grassland, cereals, roots) in intensive agricultural systems was studied at scales from hillslope plots (0.5 m2) to large catchment (>300 km2). By fractionating the total nutrient load it was possible to establish that most of the phosphorus was transported in the unreactive (particulate and organic) fraction via surface runoff. This was true regardless of the scale of measurement. The form of the nitrogen load varied with land use and grazing intensity. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were recorded in surface runoff from heavily grazed land. In subsurface flow from small (2 km2) subcatchments and in larger (>300 km2) catchments, organic nitrogen was found to be an important secondary constituent of the total nitrogen load, comprising 40% of the total annual load.  相似文献   

15.
For effective water quality management and policy development, spatial variability in the mean concentrations and dynamics of riverine water quality needs to be understood. Using water chemistry (calcium, electrical conductivity, nitrate-nitrite, soluble reactive phosphorus, total nitrogen, total phosphorus and total suspended solids) data for up to 578 locations across the Australian continent, we assessed the impact of climate zones (arid, Mediterranean, temperate, subtropical, tropical) on (i) inter-annual mean concentration and (ii) water chemistry dynamics as represented by constituent export regimes (ratio of the coefficients of variation of concentration and discharge) and export patterns (slope of the concentration-discharge relationship). We found that inter-annual mean concentrations vary significantly by climate zones and that spatial variability in water chemistry generally exceeds temporal variability. However, export regimes and patterns are generally consistent across climate zones. This suggests that intrinsic properties of individual constituents rather than catchment properties determine export regimes and patterns. The spatially consistent water chemistry dynamics highlights the potential to predict riverine water quality across the Australian continent, which can support national riverine water quality management and policy development.  相似文献   

16.
巢湖典型子流域上下游水塘对暴雨径流氮磷去除效率比较   总被引:2,自引:0,他引:2  
从流域上下游环境条件及氮磷输出强度差异出发,探讨上下游水塘对径流氮磷去除的特征及效率,选取巢湖小柘皋河源头流域上下游水塘开展水塘去除暴雨径流氮磷的对比试验,研究暴雨及暴雨间期上下游水塘氮磷去除效率差异及原因,为流域上下游设计不同类型净化塘去除氮磷提供科学依据.结果表明:暴雨期,上游径流氮磷浓度高于下游,且颗粒态所占比例上游大于下游,流域上游应作为防治暴雨径流氮磷流失的重点区域;暴雨期,上游塘对暴雨径流中的氮磷去除效果明显,氮、磷去除率分别为74%和52%,且对颗粒态去除效果好于溶解态,下游塘没有表现出明显的去除效果;暴雨间期,上游塘塘内氮磷浓度平均下降50%和20%,下游塘则分别为72%和16%,且均以溶解态去除为主;水塘去除暴雨径流氮磷有一定的浓度适用范围,浓度过低,去除效果不明显;流域部位不同引起入塘径流氮磷浓度和形态的差异是上下游水塘对暴雨径流去除效果差异的主要外部原因.流域上游出山口,可以在渗透性好的山前洪积扇上构建深水宽塘,通过增加暴雨径流拦截量和降低流速增强物理沉降作用,实现暴雨径流氮磷的高效去除;流域下游农田区,宜构建水面较大的浅滩湿地,通过延长滞留时间和促进生物活动增强去除暴雨径流氮磷的效果.  相似文献   

17.
稻田氮磷径流流失模型研究进展   总被引:1,自引:0,他引:1  
黄微尘  周丰  梁浩  陈磊 《湖泊科学》2021,33(2):336-348
水稻是全球最重要的粮食作物,但种植过程中不合理的水肥管理引起了稻田氮磷径流流失,对邻近水体造成污染风险.稻田氮磷径流流失模型是理解区域水体污染排放时空特征和评估水污染风险的有效手段.论文阐述了稻田氮磷径流流失的发生机制和关键过程,梳理了统计经验模型、物理机理模型、水文过程模型和生态系统模型的研发历程.结果表明,当前模型...  相似文献   

18.
A number of studies in north Queensland over the past two decades have concluded that large amounts of nutrients and sediments are exported from agricultural watersheds, particularly during wet season rainfall events. With the co-operation of a number of growers, runoff from Queensland Wet Tropics banana and cane farm paddocks in two distinct tropical river catchments was examined to provide an estimate of nutrient and sediment concentrations and export, with comparison to water quality of flow through a small urban lakes system. Median total nitrogen concentrations in cane drainage runoff (3110 microg N/L) were higher than for banana paddock drainage (2580 microg N/L), although the maximum concentration was recorded from a banana paddock (20,900 microg N/L). Nitrogen losses during post-event drainage flow were supplemented by high proportions of NO(X) (nitrate + nitrite) sourced from groundwater inputs. Banana paddocks had the highest maximum and median total phosphorus and TSS concentrations (5120 and 286 microg P/L, and 7250 and 75 mg/L respectively) compared to the cane farms (1430 and 50 microg P/L, and 1840 and 14 mg/L respectively). The higher phosphorus and TSS concentrations in the banana runoff were attributed to higher paddock slopes and a greater proportion of exposed ground surface during the wet season. Highest nutrient and TSS concentrations corresponded with samples collected near the peak discharge periods; however, the rising stage of the drainage flows, where the highest nutrient and TSS concentrations are often reported, were difficult to target because of the manual sampling strategy used. This study shows that high concentrations of nutrients and TSS occur in the runoff from cane and banana paddocks. Median total nitrogen, total phosphorus and TSS concentrations in flow through the urban lakes were 369 microg N/L, 16 microg P/L and 11 mg/L, respectively. Flux estimates of 9.2 kg N, 0.8 kg P and 126 kg TSS/ha were determined for drainage runoff from a banana paddock during a single intensive storm event.  相似文献   

19.
Slapton Ley, a coastal lake, is the largest natural body of fresh water in south-west England. There was concern in the 1960s that the lake was becoming increasingly eutrophic. To quantify inputs of water, sediment and nutrients into the lake, Slapton Ley Field Centre initiated a programme of weekly water quality sampling in September 1970. Of all the chemical properties which have been measured over the decades, the nitrate record has been the subject of more research than any other. The weekly monitoring has been supplemented by research projects aimed at understanding aspects of processes and patterns of nitrate delivery to the stream network. Three aspects of the nitrate record are reviewed: short-term process dynamics; the annual cycle of influent streams and the lake itself; and long-term trends. In the first two decades of monitoring, there was increasing concern about a trend of rising nitrate concentrations, an issue in most lowland rivers in the United Kingdom at the time. In the 1990s, nitrate concentrations levelled off and then have fallen steadily in recent years. In relation to eutrophication, there are clear signs of improvement in the influent streams, but concerns remain about water quality in the lake itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号