首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A rainfall intensity–duration–frequency (IDF) relationship was generated by pooling annual maximum rainfall series from 14 recording rain gauges in southern Taiwan. Dimensionless frequency curves, plotted by the growth curve method, can be well fitted by regression equations for a duration ranging from 10 mins to 24 hours. As the parameters in regression equations have a good statistical relationship with average annual rainfall, a generalized regional IDF formula was then formulated. The formula, based on average annual rainfall as an index, can be easily applied to non-recording rain gauges. This paper further applies the mean value first-order second moment (MFOSM) method to estimate the uncertainty of the proposed regional IDF formula. From a stochastic viewpoint, the generalized regional IDF formula can accurately simulate the IDF relationship developed using frequency analysis (EV1) at individual stations. The method can provide both rainfall intensity and variance isohyetal maps for various rainfall durations and return periods over the study area. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Rainfall intensity–duration–frequency (IDF) relationships describe rainfall intensity as a function of duration and return period, and they are significant for water resources planning, as well as for the design of hydraulic constructions. In this study, the two‐parameter lognormal (LN2) and Gumbel distributions are used as parent distribution functions. Derivation of the IDF relationship by this approach is quite simple, because it only requires an appropriate function of the mean of annual maximum rainfall intensity as a function of rainfall duration. It is shown that the monotonic temporal trend in the mean rainfall intensity can successfully be described by this parametric function which comprises a combination of the parameters of the quantile function a(T) and completely the duration function b(d) of the separable IDF relationship. In the case study of Aegean Region (Turkey), the IDF relationships derived through this simple generalization procedure (SGP) may produce IDF relationships as successfully as does the well‐known robust estimation procedure (REP), which is based on minimization of the nonparametric Kruskal–Wallis test statistic with respect to the parameters θ and η of the duration function. Because the approach proposed herein is based on lower‐order sample statistics, risks and uncertainties arising from sampling errors in higher‐order sample statistics were significantly reduced. The authors recommend to establish the separable IDF relationships by the SGP for a statistically favorable two‐parameter parent distribution, because it uses the same assumptions as the REP does, it maintains the observed temporal trend in the mean additionally, it is easy to handle analytically and requires considerably less computational effort. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The study of annual maximum rainfall intensity is quite difficult in Spain due to its limited recording rain gauges and short record lengths. This problem can't be solved applying classical regional approach, since scarce stations and great climate variability prevents forming homogeneous regions. The present study tries a new way of applying regionalization, a method which improves robustness, joining series with different durations (≤1 hour, > 1 hour) at the same station to form regions. Besides, the SQRT-ETmáx distribution is used due to extreme rainfall intensity in the Mediterranean area is not under Gumbel law domain. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Most of meteorological stations in Chile register rainfall amounts once every 24 h. The creation of intensity–duration–frequency (IDF) curves requires continuous recorded data, and this insufficiency of proper instrumentation has resulted in a lack of IDF curves nationwide. The objective of this study is to further develop and evaluate the feasibility of a new method to estimate IDF curves in ungauged stations under Mediterranean climates of central Chile. A technique used to address this problem is the use of a storm index (SI), also known as the ‘K’ method, which allows the construction of IDF curves from stations with discontinuous data, by extrapolating data from stations with continuous records, as long as daily rainfall intensities for both stations differ by less than 2 mm h?1. To test the applicability of this method, SI values were calculated for 40 meteorological stations located throughout Central Chile (latitudes 30°S to 40°S). The extrapolated IDF curves were then compared with observed data, and the goodness of fit was determined. The results indicate that the storm index method can adequately estimate hourly IDF curve values for stations lacking of continuous rainfall data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Constrained scaling approach for design rainfall estimation   总被引:1,自引:1,他引:0  
Rainfall depth (or intensity) of the same frequency should follow a non-decreasing relationship with rainfall duration. However, due to the use of finite samples and sampling error, rainfall frequency analysis could yield rainfall intensity (depth)–frequency (IDF, DDF) curves of different durations that might intersect among them. Results of this kind violate physical reality and it is more likely to occur when rainfall record length gets shorter. To ensure the compliance of the physical reality, this paper applied the scale-invariant approach, in conjunction with constrained regression analysis, to circumvent intersections in rainfall IDF or DDF curves. Rainfall data of various durations at rain gauge in Hong Kong are used to demonstrate the procedure. Numerical investigation indicates that the proposed procedure yields more reasonable results than those based on the conventional frequency analysis, especially when only a small sample of data are available.  相似文献   

6.
Establishing the rainfall intensity–duration–frequency (IDF) relations by the conventional method, the use of parametric distribution models has the advantage of automatic compliance of monotonicity condition of rainfall intensity and frequency. However, fitting rainfall data to a distribution separately by individual duration may possibly produce undulation and crossover of IDF curves which does not comply physical reality. This frequently occurs when rainfall record length is relatively short which often is the case. To tackle this problem this study presents a methodological framework that integrates the third-order polynomial normal transform (TPNT) with the least squares (LS) method to establish rainfall IDF relations by simultaneously considering multi-duration rainfall data. The constraints to preserve the monotonicity and non-crossover in the IDF relations can be incorporated easily in the LS-based TPNT framework. Hourly rainfall data at Zhongli rain gauge station in Taiwan with 27-year record are used to establish rainfall IDF relations and to illustrate the proposed methodology. Numerical investigation indicates that the undulation and crossover behavior of IDF curves can be effectively circumvented by the proposed approach to establish reasonable IDF relations.  相似文献   

7.
Sensitivity analysis of the hydrological behaviour of basins has mainly focused on the correlation between streamflow and climate, ignoring the uncertainty of future climate and not utilizing complex hydrological models. However, groundwater storage is affected by climatic change and human activities. The streamflow of many basins is primarily sourced from the natural discharge of aquifers in upstream regions. The correlation between streamflow and groundwater storage has not been thoroughly discussed. In this study, the storage–discharge sensitivity of 22 basins in Taiwan was investigated by means of daily streamflow and rainfall data obtained over more than 30 years. The relationship between storage and discharge variance was evaluated using low‐flow recession analysis and a water balance equation that ignores the influence of rainfall and evapotranspiration. Based on the obtained storage–discharge sensitivity, this study explored whether the water storage and discharge behaviour of the studied basins is susceptible to climate change or human activities and discusses the regional differences in storage–discharge sensitivity. The results showed that the average storage–discharge sensitivities were 0.056 and 0.162 mm?1 in the northern and southern regions of Taiwan, respectively. In the central and eastern regions, the values were both 0.020 mm?1. The storage–discharge sensitivity was very high in the southern region. The regional differences in storage–discharge sensitivity with similar climate conditions are primarily due to differences in aquifer properties. Based on the recession curve, other factors responsible for these differences include land utilization, land coverage, and rainfall patterns during dry and wet seasons. These factors lead to differences in groundwater recharge and thus to regional differences in storage–discharge sensitivity.  相似文献   

8.
Nozzle‐type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot‐wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 runs at different rain intensities and durations, and with different rain gauge layouts, showed that a simple average of measured rain would overestimate the plot‐wide rain by about 20 per cent. Using the adjustment factor to convert measured rainfall for individual gauges before averaging improved the estimate of plot‐wide rainfall considerably. For the 15 runs considered, overall discrepancy between actual and measured rain is reduced to less than 1 per cent with a standard error of 0·97 mm. This model can be easily tested in the ?eld by comparing rainfall depths of different sized gauges. With the adjustment factor they should all give very similar values. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The impact of climate change on the behaviour of intensity–duration–frequency curves is critical to the estimation of design storms, and thus to the safe design of drainage infrastructure. The present study develops a regional time trend methodology that detects the impact of climate change on extreme precipitation from 1960 to 2010. The regional time trend linear regression method is fitted to different durations of annual maximum precipitation intensities derived from multiple sites in Ontario, Canada. The results show the relationship between climate change and increased extreme precipitation in this province. The regional trend analysis demonstrates, under nonstationary conditions arising from climate change, that the intensity of extreme precipitation increased decennially between 1.25% for the 30‐min storm and 1.82% for the 24‐h storm. A comparison of the results with a regional Mann–Kendall test validates the found regional time‐trend results. The results are employed to extrapolate the intensity–duration–frequency curves temporally and spatially for future decades across the province. The results of the regional time trend assessment help with the establishment of new safety margins for infrastructure design in Ontario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Rainfall intensity–duration–frequency (IDF) curves are used in the design of urban infrastructure. Their estimation is based on rainfall frequency analysis, usually performed on rainfall records from a single gauged station. However, available at‐site record length is often too short to provide accurate estimates for long return periods. In the present study, a general framework for pooled rainfall frequency analysis based on the index‐event model is proposed for IDF estimation at gauged stations. Pooling group formation is defined by the region of influence approach on the basis of the geographical distance similarity measure. Several pooled approaches are defined and evaluated by a procedure through which quantile estimation and uncertainty are assessed. Alternate approaches for the definition of a pooling group are based on different criteria regarding initial pooling group size (and the relationship between size and return period), approaches for assessing pooling group homogeneity, and the use of macroregions in pooling group formation. The proposed framework is applied to identify the preferred approach for pooled rainfall intensity frequency analysis in Canada. Pooled approaches are found to provide more precise estimates than the at‐site approach, especially for long return periods. Pooled parent distribution selection supported the use of the generalized extreme value distribution across the country. Recommendations for pooling group formation include increasing the pooling group size with increases in return period and identifying an appropriate trade‐off between pooling group homogeneity and size for long return periods.  相似文献   

11.
This paper reports the results of an investigation into flood simulation by areal rainfall estimated from the combination of gauged and radar rainfalls and a rainfall–runoff model on the Anseong‐cheon basin in the southern part of Korea. The spatial and temporal characteristics and behaviour of rainfall are analysed using various approaches combining radar and rain gauges: (1) using kriging of the rain gauge alone; (2) using radar data alone; (3) using mean field bias (MFB) of both radar and rain gauges; and (4) using conditional merging technique (CM) of both radar and rain gauges. To evaluate these methods, statistics and hyetograph for rain gauges and radar rainfalls were compared using hourly radar rainfall data from the Imjin‐river, Gangwha, rainfall radar site, Korea. Then, in order to evaluate the performance of flood estimates using different rainfall estimation methods, rainfall–runoff simulation was conducted using the physics‐based distributed hydrologic model, Vflo?. The flood runoff hydrograph was used to compare the calculated hydrographs with the observed one. Results show that the rainfall field estimated by CM methods improved flood estimates, because it optimally combines rainfall fields representing actual spatial and temporal characteristics of rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Hans Van de Vyver 《水文研究》2018,32(11):1635-1647
Rainfall intensity–duration–frequency (IDF) curves are a standard tool in urban water resources engineering and management. They express how return levels of extreme rainfall intensity vary with duration. The simple scaling property of extreme rainfall intensity, with respect to duration, determines the form of IDF relationships. It is supposed that the annual maximum intensity follows the generalized extreme value (GEV) distribution. As well known, for simple scaling processes, the location parameter and scale parameter of the GEV distribution obey a power law with the same exponent. Although, the simple scaling hypothesis is commonly used as a suitable working assumption, the multiscaling approach provides a more general framework. We present a new IDF relationship that has been formulated on the basis of the multiscaling property. It turns out that the GEV parameters (location and scale) have a different scaling exponent. Next, we apply a Bayesian framework to estimate the multiscaling GEV model and to choose the most appropriate model. It is shown that the model performance increases when using the multiscaling approach. The new model for IDF curves reproduces the data very well and has a reasonable degree of complexity without overfitting on the data.  相似文献   

13.
Estimates of changes in design rainfall values for Canada   总被引:1,自引:0,他引:1  
Annual maximum rainfall data from 51 stations in Canada were analyzed for trends and changes by using the Mann–Kendall trend test and a bootstrap resampling approach, respectively. Rainfall data were analyzed for nine durations ranging from 5 min to 24 h. The data analyzed are typically used in the development of intensity‐duration‐frequency (IDF) curves, which are used for estimating design rainfall values that form an input for the design of critical water infrastructure. The results reveal more increasing than decreasing trends and changes in the data with more increasing changes and larger changes, noted for the longer rainfall durations. The results also indicate that a traditional trend test may not be sufficient when the interest is in identifying changes in design rainfall quantiles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Kee‐Won Seong 《水文研究》2014,28(6):2881-2896
A general form of formula is presented for the rainfall Intensity–Duration–Frequency (IDF) relationship. This formula is derived from the nearly normal probability distribution function of transformed intensities. In order to transform the raw intensities, a correcting non‐constant spread technique, the Kruskal–Wallis statistic, and the Box–Cox transformation are adopted. These transformations enable to express a simpler model for the IDF formula that agrees well with traditional IDF relationships. Since the proposed method allows the estimation of any percentile value of intensities with a single equation, the intensity percentile at arbitrary duration can be generated easily. The validity of the formula derived by means of the proposed method is assessed using data from major weather stations in Korea. The results show that the percentile intensities produced using the proposed method are in good agreement with those of traditional frequency analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Taiwan suffers from heavy storm rainfall during the typhoon season. This usually causes large river runoff, overland flow, erosion, landslides, debris flows, loss of power, etc. In order to evaluate storm impacts on the downstream basin, a real‐time hydrological modelling is used to estimate potential hazard areas. This can be used as a decision‐support system for the Emergency Response Center, National Fire Agency Ministry, to make ‘real‐time’ responses and minimize possible damage to human life and property. This study used 34 observed events from 14 telemetered rain‐gauges in the Tamshui River basin, Taiwan, to study the spatial–temporal characteristics of typhoon rainfall. In the study, regionalized theory and cross‐semi‐variograms were used to identify the spatial‐temporal structure of typhoon rainfall. The power form and parameters of the cross‐semi‐variogram were derived through analysis of the observed data. In the end, cross‐validation was used to evaluate the performance of the interpolated rainfall on the river basin. The results show the derived rainfall interpolator represents the observed events well, which indicates the rainfall interpolator can be used as a spatial‐temporal rainfall input for real‐time hydrological modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrologic engineering designs and analyses often require the specification of design storm which involves rainfall amount, duration and hyetograph. In practice, the determination of design rainfall in hydrologic engineering applications involves the frequency analysis of extreme rainfalls of different durations and the establishment of rainfall hyetograph for the design event under consideration. Sampling errors exist in the estimation of rainfall depth (or intensity) quantiles from frequency analysis, which will be transmitted in the process of determining the design rainfall hyetograph. This paper presents a practical methodological framework based on the bootstrap resampling scheme to assess the uncertainty features associated with the magnitude of estimated rainfall depth/intensity quantiles and the corresponding design hyetographs. The procedure is implemented to quantify uncertainty of design rainfall hyetograph following the Stormwater Drainage Manual of Hong Kong involving the use of rainfall intensity–duration–frequency (IDF) model. Of particular interesting is that the bootstrap resampling scheme implemented herein is modified to handle unequal record period of annual maximum rainfall data series of different durations and to account for their intrinsic correlations. According to the adopted rainfall IDF model, the design rainfall hyetograph is a function of the IDF model coefficients. Due to the correlation among rainfall quantiles of different durations, the IDF coefficients are found to be strongly related in a nonlinear fashion which should not be ignored in the establishment of the design hyetographs.  相似文献   

18.
A thin microbial crust covers the lower part of longitudinal dunes in the western Negev, where average annual rainfall is 95 mm. In order to study the effect of the microbial crust on rainfall–runoff relationships under natural rainfall conditions, runoff plots equipped with pressure gauges were established on opposite north- and south-facing slopes that differ in their vegetal cover and crust properties. The study covered four years (1990–94). The first two years were wet and the following two years relatively dry. One to five flow events were recorded per year. No correlation was found between runoff yield, rain amount and rain intensity. Unlike many microbial crusts reported in the literature, the microbial crust in the western Negev is not hydrophobic. Infiltration rate is high under dry surface conditions and of the order of 9–12 mm h−1 when the crust is saturated. The high final infiltration rate is explained by the occurrence of large pores that do not seal when the crust is saturated. Typical hydrographs have very steep rising and falling limbs, pointing at a limited contributing area. Most flows last less than 10 min and runoff volumes collected are, on the whole, very small. Owing to differences in crust properties, runoff is higher on north- than on south-facing slopes. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Southern Ontario, Canada, has been impacted in recent years by many heavy rainfall and flooding events that have exceeded existing historical estimates of infrastructure design rainfall intensity–duration–frequency (IDF) values. These recent events and the limited number of short-duration recording raingauges have prompted the need to research the climatology of heavy rainfall events within the study area, review the existing design IDF methodologies, and evaluate alternative approaches to traditional point-based heavy rainfall IDF curves, such as regional IDF design values. The use of additional data and the regional frequency analysis methodology were explored for the study area, with the objective of validating identified clusters or homogeneous regions of extreme rainfall amounts through Ward's method. As the results illustrate, nine homogeneous regions were identified in Southern Ontario using the annual maximum series (AMS) for daily and 24-h rainfall data from climate and rate-of-rainfall or tipping bucket raingauge (TBRG) stations, respectively. In most cases, the generalized extreme value and logistic distributions were identified as the statistical distributions that provide the best fit for the 24-h and sub-daily rainfall data in the study area. A connection was observed between extreme rainfall variability, temporal scale of heavy rainfall events and location of each homogeneous region. Moreover, the analysis indicated that scaling factors cannot be used reliably to estimate sub-daily and sub-hourly values from 24- and 1-h data in Southern Ontario.

Citation Paixao, E., Auld, H., Mirza, M.M.Q., Klaassen, J. & Shephard, M.W. (2011) Regionalization of heavy rainfall to improve climatic design values for infrastructure: case study in Southern Ontario, Canada. Hydrol. Sci. J. 56(7), 1067–1089.  相似文献   

20.
This paper presents an analytical method for establishing a stage–fall–discharge rating using hydraulic performance graphs (HPG). The rating curves derived from the HPG are used as the basis to establish the functional relation of stage, fall and discharge through regression analysis following the USGS procedure. In doing so, the conventional trial‐and‐error process can be avoided and the associated uncertainties involved may be reduced. For illustration, the proposed analytical method is applied to establish stage–fall–discharge relations for the Keelung River in northern Taiwan to examine its accuracy and applicability in an actual river. Based on the data extracted from the HPG for the Keelung River, one can establish a stage–fall–discharge relation that is more accurate than the one obtained by the conventionally used relation. Furthermore, the discharges obtained from the proposed rating method are verified through backwater analysis for measured high water level events. The results indicate that the analytical stage–fall–discharge rating method is capable of circumventing the shortcomings of those based on single‐station data and, consequently, enhancing the reliability of flood estimation and forecasting. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号