首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Understanding the response of partially saturated earth structures under various static and dynamic loads is important for the design and construction of economical and safe geotechnical engineering structures. In this study, the numerical approach is used to understand the dynamics of partially saturated soils. The mathematical equations governing the dynamics of partially saturated soils are derived based on the theory of mixtures and implemented within a finite element framework. The stress–strain behavior of the soil is represented by an elasto-plastic constitutive model for unsaturated soil based on bounding surface concept and the moisture-suction behavior is modeled using van Genuchten model. Fully coupled finite element simulations are performed to study the response of partially saturated soil embankment under earthquake loading and validated with centrifuge test results available in the literature. The predicted displacement responses are in good agreement with the measured responses. The pore water pressure, pore air pressure, matric suction, the degree of saturation in various elements and the response of the embankment under different initial moisture content are also discussed.  相似文献   

2.
Linking quickflow response to subsurface state can improve our understanding of runoff processes that drive emergent catchment behaviour. We investigated the formation of non-linear quickflows in three forested headwater catchments and also explored unsaturated and saturated storage dynamics, and likely runoff generation mechanisms that contributed to threshold formation. Our analyses focused on two reference watersheds at the Coweeta Hydrologic Laboratory (CHL) in western North Carolina, USA, and one reference watershed at the Susquehanna Shale Hills Critical Zone Observatory (SHW) in Central Pennsylvania, USA, with available hourly soil moisture, groundwater, streamflow, and precipitation time series over several years. Our study objectives were to characterise (a) non-linear runoff response as a function of storm characteristics and antecedent conditions, (b) the critical levels of shallow unsaturated and saturated storage that lead to hourly flow response, and (c) runoff mechanisms contributing to rapidly increasing quickflow using measurements of soil moisture and groundwater. We found that maximum hourly rainfall did not significantly contribute to quickflow production in our sites, in contrast to prior studies, due to highly conductive forest soils. Soil moisture and groundwater dynamics measured in hydrologically representative areas of the hillslope showed that variable subsurface states could contribute to non-linear runoff behaviour. Quickflow generation in watersheds at CHL were dominated by both saturated and unsaturated pathways, but the relative contributions of each pathway varied between catchments. In contrast, quickflow was almost entirely related to groundwater fluctuations at SHW. We showed that co-located measurements of soil moisture and groundwater supplement threshold analyses providing stronger prediction and understanding of quickflow generation and indicate dominant runoff processes.  相似文献   

3.
黄土具有极强的水敏性和动力易损性,黄土地区多次强震都引起过液化、滑坡等地质灾害,造成了严重的人员伤亡和财产损失,因此振动作用下高含水率黄土的液化问题不容忽视。在大量已有研究的基础上,以宁夏党家岔滑坡为例,研究振动作用下高含水率黄土的液化问题。现场调查发现高含水率滑带土并未达到完全饱和状态(饱和度达95%左右),在新鲜的芯样断面发现有明显的"流态化"液化破坏特征。借助室内试验和数值模拟技术,对党家岔滑坡非饱和黄土层的液化性能及液化发生机理进行分析。结果表明:(1)非饱和黄土层液化发生机理可概括为:地震作用下饱和黄土层孔隙水压力激增,高含水率非饱和黄土层孔压增长响应滞后,随着孔隙水压朝上部消散,地下水向上渗流,当平均有效应力接近0时,高含水率非饱和黄土层发生液化;(2)振动过程中不同饱和度黄土孔隙水压力增长响应具有滞后性,借鉴饱和黄土液化时孔压比的判别标准和Seed简化判别法,初步证实党家岔滑坡高含水率非饱和黄土层可发生振动液化,斜坡前缘和中部土体发生液化的初始饱和度范围分别为68.3%~100%和73.8%~100%,斜坡后缘土体不发生液化。  相似文献   

4.
Gully and badland erosion constitute important land‐degradation processes with severe on‐site and off‐site effects above all in sedimentary deposits and alluvial soils of the arid and semi‐arid regions. Agricultural use of the affected land is impeded both by the irreversible loss of topsoil and the morphological dissection of the terrain. In various badland regions around the world, a solution to the latter problem is attempted by infilling of gullies and levelling of badland topography in order restore a morphology suitable for agricultural cultivation. Gully and badland levelling for agricultural reclamation has been conducted for decades in the large ravine lands of India. This study aims at analysing the distribution and dynamics of land levelling within the Chambal badlands in Morena district, Madhya Pradesh, between 1971 and 2015. Using high to medium resolution satellite images from the Corona, Landsat, Aster and RapidEye missions and a multi‐temporal classification approach, we have mapped and quantified areas that were newly levelled within eight observation periods. We analysed the spatial relation of levelled land to several physical and socio‐economic factors that potentially influence the choice of reclamation site by employing geographic information system (GIS) analysis methods and results from focus‐group discussions in selected villages. Results show that nearly 38 km2 or 23% of the badlands in the study area have been levelled within 45 years. The levelling rate generally increases during the observation period, but the annual variability is high. We have found spatial relationships to badland morphology, vicinity of existing cropland and proximity to villages and drainage lines. From a socio‐economic point of view, availability of financial and technical means, access rights to the badland and ownership issues play an important role. Considering studies on soil degradation caused by levelling of badlands in other regions, the sustainability of the newly reclaimed fields in the Chambal badlands is questionable. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Measurements have been made of unsaturated and saturated lateral soil water flow on a convex hill-slope with a good soil cover and impermeable bedrock during natural rainstorms. The hydraulics of flow are examined in detail with particular reference to the role of breaks in vertical permeability, the change from saturated to unsaturated flow and the velocity of flow. In this instance, after rainfall slope flow is dominated by vertical unsaturated movement towards the profile base. Preceding upslope moisture gradients result in the growth of a zone of soil saturation upwards from the slope base. Slope discharge, through the B and B/C horizons, is related to the form of the saturation zone, within which flow is lateral, according to Darcy's law. The time required for vertical percolation and the low hydraulic conductivity of the lower soil horizons result in a hillslope hydrograph which is delayed and attenuated and cannot be regarded as stormflow. During drainage the saturation zone contracts and is replaced by a lateral unsaturated flow system at the profile base which supplies discharge from the B/C horizon for up to 42 days without further recharge. It is concluded that, in general, either distinct soil horizons or impermeable bedrock are essential for the initiation of lateral flow. Saturated flow is likely to dominate hillslope hydrographs through non-capillary pore spaces but these may be integrated to the point where Darcy's law still holds. Although lateral soil water flow must be a widespread phenomenon, it is unlikely to provide storm runoff to the stream unless saturated conditions are generated within the organic horizons for flow within the lower soil horizons is dominated by non-Darcian flow through non-capillary spaces in the soil.  相似文献   

6.
Various remote‐sensing methods are available to estimate soil moisture, but few address the fine spatial resolutions (e.g. 30‐m grid cells) and root‐zone depth requirements of agricultural and other similar applications. One approach that has been previously proposed to estimate fine‐resolution soil moisture is to first estimate the evaporative fraction from an energy balance that is inferred from optical and thermal remote‐sensing images [e.g. using the Remote Sensing of Evapotranspiration (ReSET) algorithm] and then estimate soil moisture through an empirical relationship to evaporative fraction. A similar approach has also been proposed to estimate the degree of saturation. The primary objective of this study is to evaluate these methods for estimating soil moisture and degree of saturation, particularly for a semi‐arid grassland with relatively dry conditions. Soil moisture was monitored at 28 field locations in south‐eastern Colorado with herbaceous vegetation during the summer months of 3 years. In situ soil moisture and degree of saturation observations are compared with estimates calculated from Landsat imagery using the ReSET algorithm. The in situ observations suggest that the empirical relationships with evaporative fraction that have been proposed in previous studies typically provide overestimates of soil moisture and degree of saturation in this region. However, calibrated functions produce estimates with an accuracy that may be adequate for various applications. The estimates produced by this approach are more reliable for degree of saturation than for soil moisture, and the method is more successful at identifying temporal variability than spatial variability in degree of saturation for this region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrological threshold behaviour has been observed across hillslopes and catchments with varying characteristics. Few studies, however, have evaluated rainfall–run‐off response in areas dominated by agricultural land use and artificial subsurface drainage. Hydrograph analysis was used to identify distinct hydrological events over a 9‐year period and examine rainfall characteristics, dynamic water storage, and surface and subsurface run‐off generation in a drained and farmed closed depression in north‐eastern Indiana, USA. Results showed that both surface flow and subsurface tile flow displayed a threshold relationship with the sum of rainfall amount and soil moisture deficit (SMD). Neither surface flow nor subsurface tile flow was observed unless rainfall amount exceeded the SMD. Timing of subsurface tile flow relative to soil moisture response on the shoulder slope of the depression indicated that the formation and drainage of perched water tables on depression hillslopes were likely the main mechanism that produced subsurface connectivity. Surface flow generation was delayed compared with subsurface tile flow during rainfall events due to differences in soil water storage along depression hillslopes and run‐off generation mechanisms. These findings highlight the substantial impact of subsurface tile drainage on the hydrology of closed depressions; the bottom of the depression, the wettest area prior to drainage installation, becomes the driest part of the depression after installation of subsurface drainage. Rapid connectivity of localized subsurface saturation zones during rainfall events is also greatly enhanced because of subsurface drainage. Thus, less fill is required to generate substantial spill. Understanding hydrologic processes in drained and farmed closed depressions is a critical first step in developing improved water and nutrient management strategies in this landscape.  相似文献   

8.
Hydrological scientists develop perceptual models of the catchments they study, using field measurements and observations to build an understanding of the dominant processes controlling the hydrological response. However, conceptual and numerical models used to simulate catchment behaviour often fail to take advantage of this knowledge. It is common instead to use a pre‐defined model structure which can only be fitted to the catchment via parameter calibration. In this article, we suggest an alternative approach where different sources of field data are used to build a synthesis of dominant hydrological processes and hence provide recommendations for representing those processes in a time‐stepping simulation model. Using analysis of precipitation, flow and soil moisture data, recommendations are made for a comprehensive set of modelling decisions, including Evapotranspiration (ET) parameterization, vertical drainage threshold and behaviour, depth and water holding capacity of the active soil zone, unsaturated and saturated zone model architecture and deep groundwater flow behaviour. The second article in this two‐part series implements those recommendations and tests the capability of different model sub‐components to represent the observed hydrological processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers the contributions of overland flow, throughflow and deep seepage to the generation of streamflow in a salt-affected, deeply weathered landscape. Runoff mechanisms on a small hillslope in south-western Australia were dependent on the extent and development of variable source areas. In winter, streamflow generation was controlled by returnflow, saturation overland flow and throughflow. In summer, post-ponding, infiltration-excess and saturation overland flow dominated. The extent of the variable source area and the magnitude of streamflow were due to antecedent soil moisture, rainfall and slope morphology. Concave hillslope sections accumulated soil moisture due to both saturated and unsaturated lateral flow processes. Throughflow provided the mechanism and vehicle for solute movement from the groundwater discharge area to the stream. However, discharge from the deep aquifer was the primary mechanism responsible for soil salinity and maintaining the core of the variable source area. Estimates of throughflow which only take account of soil-water movement and disregard returnflow, will underestimate the magnitude of throughflow.  相似文献   

10.
Four areas were selected to represent a range of processes characteristic of badland surfaces in southeast Spain: Petrer and Monnegre in Alicante, Vera and Tabernas in Almería. At Petrer, rilling and swelling processes produce a deeply cracked surface drained by a finely textured network of shallow rills. At Monnegre, piping and rilling are differentially developed on slopes ultimately controlled by basal incision. At Vera, aspect-controlled lichen and vegetation cover produce a sequence of badland development within which the relative importance of piping, mass movement and rilling varies through the sequence. At Tabernas, simple overland flow is the dominant process, but aspect influences rill network density and badland evolution. The factors controlling badland development can be grouped into those related to gross morphology, to surface cover and runoff generation, and to material properties. These factors are effective over varying timescales, implying that morphological response times differ among the selected badlands.  相似文献   

11.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

12.
The sediment budget of the small research catchment of Cal Parisa (Vallcebre, Eastern Pyrenees) was studied by hydrological monitoring and assessment of the erosion rates in the major sediment sources. This area is characterized by clayey mudrock prone to landsliding and badland erosion, but the catchment was selected in an area free of major badland features, as a representative of middle mountain regions where a system of terraces and drainage ditches had been built for agricultural use but is now abandoned. Streamwater chemistry is dominated by Ca2+ and HCO3 at concentrations close to calcite saturation. Total dissolved solids show dilution during runoff peaks and positive hysteresis loops that support a slow contribution of subsurface water. Relative dissolved ion concentrations are different for each event analysed. Particulate sediment yield is very low and represents only about 1 per cent of gross erosion in the catchment. Mineralogical analysis of suspended sediments shows an enrichment in calcite because of precipitation. Chemical analysis of suspended sediments, using common one-litre water samples, shows higher contents of Ca, P and Mn in transported sediment than in sediment source areas, attributed to the precipitation of calcite, and enrichment in organic particulate matter during events respectively for the two first elements, whereas enrichment in Mn remains uncertain. Solid matter yield is therefore clearly dominated by dissolved transport as a result of both high calcium bicarbonate concentrations in runoff waters and strong suspended sediment conveyance discontinuities. Land conservation structures are very effective because they are in good condition whereas the soil is covered by dense permanent vegetation. Nevertheless, this state is unstable because the network of drainage ditches needs maintenance; its spontaneous breakdown after abandonment may result in the rearrangement of the elementary stream network and gullying of old fields in hollows. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we investigated rainfall, run‐off, and sediment transport dynamics (414 run‐off events and 231 events with sediment information) of a humid mountain badland area—the Araguás catchment (Central Pyrenees, Spain)—from October 2005 to September 2016. Use of this long‐term database allows characterization of the hydrological response, which consist of low‐magnitude/high‐frequency events and high‐magnitude/low‐frequency events, and identification of seasonal dynamics and rainfall‐run‐off thresholds. Our results indicate that the Araguás catchment, similarly to other humid badlands, had high hydrological responsiveness (mean annual run‐off coefficient: 0.52), a non‐linear relationship of rainfall with run‐off (common in Mediterranean environments), and seasonal hydrological and sedimentological dynamics. We created and validated a multivariate regression model to characterize the hydrological variables (stormflow and peak discharge) and sedimentological variables (mean and maximum suspended sediment concentrations and total suspended sediment load). In summer and at the beginning of autumn, the response was mainly related to rainfall intensity, suggesting a predomination of Hortonian flows. In contrast, in spring and winter, the responses were mainly related to the antecedent conditions (previous rainfall and baseflow), suggesting the occurrence of saturated excess flow processes, and the contribution of neighbouring vegetated areas. The multivariate analysis also showed that total sediment load is better predicted by a multivariate regression model that integrates pre‐event, rainfall, and run‐off variables. In general, our models provided more accurate predictions of small‐magnitude/high‐frequency events than high‐magnitude/low‐frequency events. This study highlights the high inter‐ and intra‐annual variability response in humid badland areas and that long‐term records are needed to reduce the uncertainty of hydrological and sedimentological responses in Mediterranean badland areas.  相似文献   

14.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

15.
The suspended sediment response of a small catchment subjected to farmland abandonment and subsequent plant recolonization was studied in relation to its hydrological functioning. The analysis of data over a seven‐year period demonstrated that suspended sediment yield was greatly influenced by the occurrence of intense, low‐frequency events. Greater amounts of suspended sediment were exported during spring, when the catchment was hydrologically more active. Rainfall intensity and baseflow at the start of a flood event had a strong influence on the sediment response, suggesting that several hydrological processes were active within the catchment. SSC (suspended sediment concentration)‐Q hysteretic loop analysis at the event scale aided understanding of the sedimentological and hydrological behaviour of the catchment. During the study period the SSC‐Q loops showed a high degree of seasonality and two main patterns strongly related to catchment wetness were distinguished. When the catchment was dry (mainly during summer and the beginning of autumn) the predominant process was infiltration excess runoff over sparsely vegetated areas close to the main channel. Under these conditions, floods exhibited a counter‐clockwise hysteretic loop and were characterized by a small streamflow response, short duration and high SSC. Under wet conditions (mainly during winter and spring), saturation excess runoff was increasingly dominant over vegetated areas. Under these conditions, floods exhibited a clockwise hysteretic loop, and were characterized by a larger streamflow response, longer duration and higher suspended sediment yield. The lower SSC during the falling stage of the hydrograph is likely to be due to dilution effects related to the contribution of clean water resulting from enlargement of the saturated areas, together with an increase in the baseflow discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This article describes and formulates a model designed to simulate runoff in wet weather events, called reservoir rainfall–runoff geomorphological model (R3GeM). In these wetlands, soil saturation is the main mechanism for the generation of surface runoff. To determine the saturated areas, the model applies a relationship based on the topographic index, between watershed storage and saturated surface. Precipitation is separated into surface runoff by saturation, subsurface runoff and losses; then, the flow of surface and subsurface runoff is performed. This hydrological model has five parameters and has been implemented in 37 events in Aixola watershed and 15 in Oiartzun watershed, both located on the Cantabrian coast of Spain. We analysed the influence of these five parameters in their behaviour, and we have proven, noting the efficiency gains, that the proposed model is valid to simulate the rainfall–runoff process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Current conceptual runoff models hypothesize that stormflow generation on the Canadian Shield is a combination of subsurface stormflow and saturation overland flow. This concept was tested during spring runoff in a small (3.3 ha) headwater basin using: (1) isotopic and chemical hydrograph separation and (2) field mapping and direct tracing of saturated areas. Isotopic and chemical hydrograph separation indicated three runoff components: (1) pre-melt subsurface flow; (2) subsurface flow of new (event) water; and (3) direct precipitation on to saturated areas (DPS). During early thaw-freeze cycles, their relative contributions to total flow remained constant (65 per cent, 30 per cent, and 5 per cent respectively). It is hypothesized that lateral flow along the bedrock/mineral soil interface, possibly through macropores, supplied large volumes of subsurface flow (of both old and new water) rapidly to the stream channel. Much higher contributions of DPS were observed during an intensive rain-on-snow event (15 per cent of total flow). Mapping and direct tracing of saturated areas using lithium bromide, suggested that saturated area size was positively correlated to stream discharge but its response lagged behind that of discharge. These observations suggest that the runoff mechanisms, and hence the sources of stream flow, will vary depending on storm characteristics.  相似文献   

18.
Organized spatial distribution of plants (plant zonation) in salt marshes has been linked to the soil aeration condition in the rhizosphere through simplistic tidal inundation parameters. Here, a soil saturation index (ratio of saturation period to tidal period at a soil depth) is introduced to describe the soil aeration condition. This new index captures the effects of not only the tidal inundation period and frequency but also the flow dynamics of groundwater in the marsh soil. One‐dimensional numerical models based on saturated flow with the Boussinesq approximations and a two‐dimensional variably saturated flow model were developed to explore the behaviour of this new soil aeration variable under the influence of spring‐neap tides. Simulations revealed two characteristic zones of soil aeration across the salt marsh: a relatively well aerated near‐creek zone and a poorly aerated interior zone. In the near‐creek zone, soils undergo periodic wetting and drying as the groundwater table fluctuates throughout the spring‐neap cycle. In the interior, the soil remains largely water saturated except for neap tide periods when limited drainage occurs. Although such a change of soil aeration condition has been observed in previous numerical simulations, the soil saturation index provides a clear delineation of the zones that are separated by an ‘inflexion point’ on the averaged index curve. The results show how the saturation index represents the effects of soil properties, tidal parameters and marsh platform elevation on marsh soil aeration. Simulations of these combined effects have not been possible with traditional tidal inundation parameters. The saturation index can be easily derived using relatively simple models based on five non‐dimensional variables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Many remaining areas of tropical rainforest in south‐east Asia are located on landscapes dominated by deep valleys and very steep slopes. Now that logging activities are extending into these steeplands, it is essential to understand how the natural rainforest system behaves if any kind of realistic assessment of the effects of such disturbance is to be made. This paper examines the hydrological behaviour of an undisturbed rainforest system on steep topography in the Temburong District of Brunei, north‐west Borneo. The physical and hydrological properties of the regolith material are generally typical of tropical residual soils. The regolith has a clay texture and a low dry bulk density beneath a superficial litter/organic horizon. The infiltration capacity of the surface soil was several hundred mm h−1. That of the exposed mineral subsoil was an order of magnitude less, similar to the saturated hydraulic conductivity (Ksat) of around 180 mm h−1 at a depth of 150 cm. There was no indication that Ksat reduced with depth except very near the bedrock interface. Soil tensions were measured using a two‐dimensional array of tensiometers on a 30° slope. During dry season conditions, infiltrating rain‐water contributes to soil moisture, and drying of the soil is dominated by transpiration losses. During wet season conditions, perched water tables quickly develop during heavy rainfall, giving rise to the rapid production of return flow in ephemeral channels. No infiltration excess or saturation overland flow was observed on hillslopes away from channel margins. Subsurface storm flow combined with return flow produce stream flow hydrographs with high peak discharges and very short lag times. Storm event runoff coefficients are estimated to be as high as 40%. It is concluded that the most distinctive feature of the hydrology of this ‘steepland rainforest’ is the extremely ‘flashy’ nature of the catchment runoff regime produced by the combination of thin but very permeable regolith on steep slopes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Lateral subsurface flow is generally assumed to occur as a result of the development of a saturated zone above a low‐permeability interface such as at the soil–bedrock contact, and it is often augmented by macropore flow. Our objective was to evaluate the development of lateral subsurface flow and soil saturation at a semiarid ponderosa pine forest in New Mexico with respect to the conceptual model of saturation building above the soil–bedrock contact. At this site, we have long‐term observations of the water budget components, including lateral flow. A 1·5 m deep by 7 m long trench was constructed to observe lateral subsurface flow and development of saturation directly. Our observations are based on flow resulting from a melting snowdrift. The edge of the drift was about 7 m upslope from the trench. Lateral subsurface flow only occurred from root macropores in the Bt soil horizon. Saturation developed and grew outward from flowing root macropores, rather than growing upward from the soil–bedrock interface. This macropore‐centred saturation resulted in a highly heterogeneous distribution of water content until enough macropores began flowing and individual macropore saturated zones grew large enough to coalesce and saturate large volumes of the soil. Our observations are based on one snowmelt event and a relatively short hillslope flow path, and thus do not represent a full range of hydrologic conditions. Nevertheless, the observed behaviour did not conform to the traditional model of soil–bedrock control of saturation and lateral flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号