首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetting and drying due to tidal fluctuations affect soil conditions and hence plant growth in tidal marshes. Here, a coupled one-dimensional model was developed to simulate interacting groundwater flow and plant growth in these wetlands. The simulation results revealed three characteristic zones of soil conditions for plant growth along a cross-creek section subjected to the combined influences of spring-neap tides and evapotranspiration: (1) a near-creek zone affected by semi-diurnal tides over the whole spring-neap cycle, where the soil is well aerated although the plant growth could be slightly limited by the local water content dropping periodically below the wilting point on the ebb tide; (2) a less well-drained zone where drainage occurs only during neap tides (for which the daily inundation is absent) and plant growth is aeration-limited; and (3) an interior zone where evapotranspiration determines the soil–water saturation. Plant growth dynamics, which depend on these soil conditions, lead to spatial biomass distributions that are consistent with the characteristic zonation. The simulations shed light on the feedback mechanism for groundwater–vegetation interactions in the marsh system. It was demonstrated that the growth of pioneer plants can improve the soil aeration condition as a result of transpiration. The strength of this feedback varies spatially in accordance with the three characteristic zones of soil–water saturation. However, the development of another species in the marsh system is likely to be more complicated than suggested by the “positive feedback” mechanism proposed previously, due to the influence of inter-species competition. The feedback effects are generally more complex, involving both plant growth enhancement and inhibition depending on the combined influence of the intra- and inter-species competition, the ecosystem’s carrying capacity and plant transpiration. These findings demonstrate the interplay of ecological and hydrological processes in tidal marshes, and provide guidance for future research, including field investigations that aim to establish the principle relationship between marsh morphology and plant zonation.  相似文献   

2.
During a one‐year period temporal and spatial variations in suspended sediment concentration (SSC) and deposition were studied on a salt and freshwater tidal marsh in the Scheldt estuary (Belgium, SW Netherlands) using automatic water sampling stations and sediment traps. Temporal variations were found to be controlled by tidal inundation. The initial SSC, measured above the marsh surface at the beginning of inundation events, increases linearly with inundation height at high tide. In accordance with this an exponential relationship is observed between inundation time and sedimentation rates, measured over 25 spring–neap cycles. In addition both SSC and sedimentation rates are higher during winter than during summer for the same inundation height or time. Although spatial differences in vegetation characteristics are large between and within the studied salt and freshwater marsh, they do not affect the spatial sedimentation pattern. Sedimentation rates however strongly decrease with increasing (1) surface elevation, (2) distance from the nearest creek or marsh edge and (3) distance from the marsh edge measured along the nearest creek. Based on these three morphometric parameters, the spatio‐temporal sedimentation pattern can be modelled very well using a single multiple regression model for both the salt and freshwater marsh. A method is presented to compute two‐dimensional sedimentation patterns, based on spatial implementation of this regression model. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Recent initiatives directing tidal power development in the Bay of Fundy have raised questions about far‐field environmental impacts related to energy extraction. It is understood that commercial scale tidal power installations in the Minas Passage will result in an overall decrease in tidal amplitude in the Minas Basin. Corresponding changes in sedimentation patterns may or may not be within the natural range of variability, and it is hypothesized that intertidal sedimentation rates will demonstrate a non‐linear response to modification of the tidal energy regime. This research considers acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) data from a sheltered tidal creek in the Minas Basin, for analysis of tidal characteristics in a hypertidal creek environment over spring and neap tidal cycles. Sediment deposition in the creek was also measured. Results show a first‐order control of topography on flow magnitude in the tidal creek, which impacts net sediment deposition through resuspension and removal of newly introduced material. This study demonstrates that tides which peak around the bankfull level show reduced early ebb stage turbulence and flow velocity and encourage an extended depositional period. The dynamics of marshfull tides may be responsible for the maximum sediment deposition in tidal creeks, providing large amounts of material that is eventually distributed to and deposited on marsh surfaces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Macro-pores such as crab burrows are found commonly distributed in salt marsh sediments. Their disturbance on the soil structure is likely to influence both pore water flows and solute transport in salt marshes; however, the effects of crab burrows are not well understood. Here, a three-dimensional model simulated tidally driven pore water flows subject to the influence of crab burrows in a marsh system. The model, based on Richards’ equation, considered variably saturated flow in the marsh with a two-layer soil configuration, as observed at the Chongming Dongtan wetland (Shanghai, China). The simulation results showed that crab burrows distributed in the upper low-permeability soil layer, acting as preferential flow paths, affected pore water flows in the marsh particularly when the contrast of hydraulic conductivity between the lower high-permeability soil layer and the overlying low-permeability soils was high. The burrows were found to increase the volume of tidally driven water exchange between the marsh soil and the tidal creek. The simulations also showed improvement of soil aeration conditions in the presence of crab burrows. These effects may lead to increased productivity of the marsh ecosystem and enhancement of its material exchange with coastal waters.  相似文献   

5.
6.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Analyses of independent laboratory- and field-scale measurements from two sites on Sapelo Island, Georgia reveal heterogeneity in hydraulic parameters across the upland–estuary interface. Regardless of the method used (short-duration pumping tests, amplitude attenuation of tidal pumping data, sediment grain size distributions, and falling head permeameter tests), we obtain hydraulic conductivity of 10−4 m s−1 for the fine-grained, well-sorted, clean sands that make up the upland areas. Proximal to the upland–estuary boundary, the tidal pumping analyses and permeameter tests suggest that hydraulic conductivities decrease by more than two orders of magnitude, a result consistent with the presence of a clogging layer. Such a clogging layer may arise due to a variety of physical, chemical, or biological processes. The extent and orientation of the layers of reduced hydraulic conductivity near the upland–estuary boundary influence the nature of the aquifer's response to tidal forcing. Where the lower conductivity layer forms a relatively flat creek bank, tidal pumping produces a primarily mechanical response in the adjacent aquifer. Where the creek bank is nearly vertical, there is a more direct hydraulic connection between the tidal creek and the adjacent aquifer. The clogging layer likely contributes to the development of complicated flow pathways across the upland–estuary boundary. Effective flow paths calculated from tidal pumping data terminate within the marsh, beyond the boundary of the upland aquifer, suggesting a diffuse regime of groundwater discharge in the marsh. We postulate that, in many settings, submarsh flow may be as important as seepage faces for groundwater discharge into the marsh–estuary complex.  相似文献   

8.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

9.
An experimental study of temperature cycles and the heat budget in the Duplin River, a tidal creek bordered by extensive intertidal salt marshes, was carried out in late summer of 2003 and spring of 2004 near Sapelo Island on the central Georgia coast in the southeastern US. Three water masses are identified with differing temperature and salinity regimes, the characteristics of which are dictated by channel morphology, tidal communication with the neighboring sound, ground water hydrology, the extent of local intertidal salt marshes and side channels and the spring–neap tidal cycle (which controls both energetic mixing and, presumably, ground water input). For the first experiment, heat budgets are constructed for the upper (warmer) and lower (cooler) areas of the Duplin River showing the diminishing importance of tidal advection away from the mouth of the creek along with the concomitant increase in the importance of both direct atmospheric fluxes and of interactions with the marsh and side creeks. The second experiment, in the spring of 2004, reexamines the heat budget on seasonal and daily averaged scales revealing the decreased importance of advective fluxes relative to direct atmospheric fluxes on this scale but the constant importance of marsh/creek interactions regardless of time scale or season. Short period temperature fluctuations which affect larval development are examined and analogies are drawn to use heat to understand the marsh as a source of sediment, carbon and other nutrients.  相似文献   

10.
Sediment flux in marsh tidal creeks is commonly used to gauge sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended‐sediment concentration (SSC), velocity and depth were measured near the mouths of two tidal creeks during three 6‐ to 10‐week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally averaged suspended‐sediment flux (SSF) in the tidal creeks varied from slightly landward to strongly bayward with increasing tidal energy. SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF for each deployment. During ebb tides following the highest tides, velocities exceeded 1 m s?1 in the narrow tidal creeks, resulting in negative tidally averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally averaged SSF was positive in wavy conditions with moderate tides. Spring tide sediment export at the creek mouth was about twice that at a station 130 m further up the tidal creek. The negative tidally averaged water flux near the creek mouth during spring tides indicates that in the lower marsh some of the water flooding directly across the bay–marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
One‐dimensional flow simulations were conducted at four locations of the shallow alluvial aquifer of the upper Rhine River (at the Erstein polder) to quantify the time‐dependent moisture distribution, the water flux and the water volume infiltrated in the unsaturated zone as a function of soil heterogeneities during a five‐day‐long flooding event. Three methods of estimating the hydraulic parameters of soil in the vadose zone were tested. They are based on the following: (1) experimental data, (2) soil particle‐size distribution and (3) pedology information on soils. Water fluxes calculated from modelling approaches 2 and 3 were compared with those of the experiment‐based values and the effect of these differences on the arrival time and velocity of water at the water table were analysed. Major differences in water fluxes were found among the methods of estimating the hydrodynamic parameters. At the Terrace location, the groundwater recharge predicted using soil data from methods 1 and 2 are approximately 4500 and 2400 mm, respectively. Flow simulations using soil data and the experiment‐based method show the highest velocities of infiltrating water at the soil surface and largest volume of groundwater infiltration but result in the lowest centres of the moisture content mass. The results obtained using soil data based on the pedological method are similar to those calculated using soil parameters based on the particle‐size distribution of extracted soil samples. Water pressure profiles calculated on Terrace and Channel location, 3 and 7 days after the inundation event agreed reasonably well with those observed when using hydrodynamic parameters from the experiment‐based method. However, the flow model using the pedology‐based parameters largely underestimates the time needed to achieve hydrostatic conditions of the soil water profile once water flooding at the soil surface stops. This can be mainly attributed to the low values of estimated van Genuchten parameter α. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Intensive water sampling in conjunction with hydrological observations was conducted during three different rainstorms in order to understand the effects of rainfall events on the temporal variation of streamwater chemistry in a small headwater forest catchment. Concentrations of Na+ and SO42? decreased as the discharge rate increased. Hydrograph separation of the components was made using the three‐component model based on the end‐members mixing analysis (EMMA). The three end‐members were:
  • 1 the groundwater in the saturated zone that prescribes the chemistry of the baseflow;
  • 2 the throughfall that dilutes the streamwater;
  • 3 the groundwater in the transient saturated zone prescribed, which was dependent on the groundwater level.
When the groundwater level was lower, only the two components, groundwater in the saturated zone and throughfall, affected the streamwater chemistry. When the groundwater level rose and the saturated zone spread, the groundwater in the transient saturated zone became the third component. When the groundwater in the transient saturated zone contributed to the discharge, this component became the dominant source and the streamwater chemistry was affected by the groundwater chemistry in the transient saturated zone. When this component was discharged as the saturation overland flow, the streamwater chemistry was greatly affected by this component. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Climate change and sea‐level rise will have severe impacts on coastal water resources around the world. However, whereas the influence of marine inundation is well documented in the literature, the impact of groundwater inundation on coastal communities is not well known. Here, core analysis, groundwater monitoring, and ground penetrating radar are utilized to assess the groundwater regime of the surficial aquifer on Bogue Banks Barrier Island (USA). Then, geospatial techniques are used to assess the relative roles and extents of groundwater and marine inundation on the dune‐dominated barrier island under sea‐level rise scenarios of 0.2, 0.5, and 1.0 m above current conditions by 2100. Additionally, the effects of rising water tables on onsite wastewater treatment systems (OWTS) are modelled using the projected sea‐level rise scenarios. The results indicate that the surficial aquifer comprising fine to medium sands responds quickly to precipitation. Water‐level measurements reveal varying thicknesses of the vadose zone (>3 to 0 m) and several groundwater mounds with radial flow patterns. Results from projected sea‐level rise scenarios suggest that owing to aquifer properties and morphology of the island, groundwater inundation may occur at the same rate as marine inundation. Furthermore, the area inundated by groundwater may be as significant as that affected by marine inundation. The results also show that the proportion of land in the study area where OWTS may be perpetually compromised by rising water tables under worst case scenarios may range from ~43 to ~54% over an 86‐year‐period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
With global warming and sea level rise, many coastal systems will experience increased levels of inundation and storm flooding, especially along sandy lowland coastal areas, such as the Northern Adriatic coast (Italy). Understanding how extreme events may directly affect groundwater hydrology in shallow unconfined coastal aquifers is important to assess coastal vulnerability and quantify freshwater resources. This study investigates shallow coastal aquifer response to storm events. The transitory and permanent effects of storm waves are evaluated through the real time monitoring of groundwater and soil parameters, in order to characterize both the saturated and unsaturated portions of the coastal aquifer of Ravenna and Ferrara (southern Po Delta, Italy). Results highlight a general increase in hydraulic head and soil moisture, along with a decrease in groundwater salinity and pore water salinity due to rainfall infiltration during the 2 days storm event. The only exceptions are represented by the observation wells in proximity to the coastline (within 100 m), which recorded a temporary increase in soil and water salinity caused by the exceptional high waves, which persist on top of the dune crest during the storm event. This generates a saline plume that infiltrates through the vadose zone down to the saturated portion of the aquifer causing a temporary disappearance of the freshwater lens generally present, although limited in size, below the coastal dunes. Despite the high hydraulic conductivity, the aquifer system does not quickly recover the pre‐storm equilibrium and the storm effects are evident in groundwater and soil parameters after 10 days past the storm overwash recess.  相似文献   

18.
This paper describes the formulation and application of a coupled unsaturated/saturated model framework developed to investigate the impact of mining on catchment water yield and groundwater dynamics. The model conceptualization was implemented in both a finite‐element (SUSCAT) and finite‐difference (WEC‐C) solution scheme and found to give similar results. The model framework simulates a coupled surface‐water and groundwater system in which a physically based solution scheme was used to simulate one‐dimensional movement through the unsaturated zone, and a distributed model was used to simulate two‐dimensional saturated groundwater flow. Each soil column comprises a series of layers, each layer being connected to adjacent cells. Subsurface lateral flow is considered when any cell within a layer develops a saturated thickness. Simulation results presented are based on a catchment in the Darling Range, Western Australia that was progressively mined and subsequently rehabilitated. The results predicted the groundwater system beneath the mine areas to have a peak rise owing to mining of between 2 and 4 m. Six years after mining, and following vegetation rehabilitation, the groundwater rise had reduced to 1 m above simulated unmined levels. The corresponding streamflow increase as a result of mining was estimated to peak at 21 mm/year and declined to 7·4 mm/year eight years after revegetation of the mined areas. The simulated groundwater response and streamflow results derived from both models were found to be consistent with observed data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
《Journal of Hydrology》2006,316(1-4):108-128
The topography, hydroperiod, water table, and selected edaphic characteristics are described for Piermont Marsh, an irregularly flooded tidal marsh in the Hudson River Estuary, New York, USA. Despite variations in microtopography, overall the marsh is flat, and although the observations were conducted at a high point in the Estuary's 18.6 year metonic cycle, its surface was only inundated 10–12 times a month. Observations of spatial differences in the saturated hydraulic conductivity and surface infiltration rates are also discussed. ‘Edge’ portions of the marsh are characterized by a slightly higher, more uniform, more structured, less organic, and less hydrologically conductive substrate than found in the marsh interior. Preferential flow is facilitated by macropores in the creekbank wall. The water table is close to the marsh surface for a lesser percentage of the lunar month in the marsh ‘edge’ when compared to the interior, where it is almost always within 10 cm of the surface. The extent to which the spatial variability of these hydrologic characteristics determines the marsh's ability to provide various ecosystem services is also discussed and the implications of these observations on tidal marsh restoration efforts briefly presented.  相似文献   

20.
A one‐dimensional, two‐layer solute transport model is developed to simulate chemical transport process in an initially unsaturated soil with ponding water on the soil surface before surface runoff starts. The developed mathematical model is tested against a laboratory experiment. The infiltration and diffusion processes are mathematically lumped together and described by incomplete mixing parameters. Based on mass conservation and water balance equations, the model is developed to describe solute transport in a two‐zone layer, a ponding runoff zone and a soil mixing zone. The two‐zone layer is treated as one system to avoid describing the complicated chemical transport processes near the soil surface in the mixing zone. The proposed model was analytically solved, and the solutions agreed well with the experimental data. The developed experimental method and mathematical model were used to study the effect of the soil initial moisture saturation on chemical concentration in surface runoff. The study results indicated that, when the soil was initially saturated, chemical concentration in surface runoff was significantly (two orders of magnitude) higher than that with initially unsaturated soil, while the initial chemical concentrations at the two cases were of the same magnitude. The soil mixing depth for the initially unsaturated soil was much larger than that for the initially saturated soil, and the incomplete runoff mixing parameter was larger for the initially unsaturated soil. The higher the infiltration rate of the soil, the greater the infiltration‐related incomplete mixing parameter. According to the quantitative analysis, the soil mixing depth was found to be sensitive for both initially unsaturated and saturated soils, and the incomplete runoff mixing parameter was sensitive for initially saturated soil but not for the initially unsaturated soil; the incomplete infiltration mixing parameter behaved just the opposite. Some suggestions are made for reducing chemical loss from runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号