首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been speculated for many years that the development of the droplet spectra in cloud is probably influenced by mixing processes. Various theoretical attempts to broaden the droplet spectra by mixing parcels with different velocity histories has shown that that particular effect is small. Similarly, very simpleuniform entrainment procedures did not lead to cloud drop size spectra which were broad enough, although by producing cloud drop size distributions with a double mode these models did substantially improve the drop size spectra of earlier adiabatic models which only exhibited a single mode.Recently a model based on entraining entities representing moving parcels of cloud air within the cloud was detailed byTelford andChai (1980). This study showed that the mixing in of dry air at cumulus turrets could lead to vertical cycling of diluted parcels, and that this cycling, with continual entrainment across the parcel boundaries, will produce much larger drops, as well as smaller drops of all sizes, in the droplet spectra. The entity entrainment concept studied there appears to apply to the observations of stratus cloud discussed in this paper.This paper presents data taken in marine stratus off the California coast which give a particularly clear example of how such droplet spectra modification occurs in practice. Both large drops, and the spread of the spectra to smaller sizes, occur in relation to other variables in such a way as to be consistent with an entity entrainment explanation, with no other obvious possibility.In a marine stratus cloud just over 200 m thick and many tens of miles in extent we find clear evidence that dry air is mixing in at cloud tops. Strong vertical motion is to be found in the cloud, large sized drops are found in cloud parcels where the mixing gives lower droplet concentrations, and there is evidence that newly formed cloud parcels are warmer and contain many more smaller droplets.The observations show that immediately following entrainment of dry air drop diameters are not reduced appreciably, but, in the same parcels, drop concentrations have been reduced by a factor of ten or more. Further down in the cloud big drops, able to start growth by coalescence, are found associated with low total droplet concentrations.Overall, it seems likely from the consideration of these observations that the formation of the large drops which lead to precipitation processes in clouds depends critically on the mixing in of dry air at cloud tops, and very little on the size of the small drops resulting from the condensation nucleus counts. As a conclusion it appears reasonable to state that if entrainment occurs at cloud tops, then big drops will be formed!  相似文献   

2.
Spectra of seven cloud lightning discharges are reported for the first time after captured with a Slit-less Spectrograph on Chinese Tibet Plateau. The structural characters are analyzed and compared with the spectra of cloud-to-ground lightning, and the results indicate that the spectra of cloud lightning show two different kinds of structure characteristics. One has the similar structure as those of cloud-toground lightning discharge, and the other is absolutely different. Meanwhile, more lines of OII with high excited energy are recorded in the spectra of cloud lightning discharge in comparison with that of cloud-to-ground lighting happening in the same region. Temperatures at different positions are calculated and temperature characteristics of these two sorts are analyzed, based to the wavelength, relative intensities and other transition parameters. We suggest that the physical process in the cloud discharge channels changes with much more rapid velocity and wider range compared to cloud-to-ground lightning. The differences between the two types of cloud discharge also reflect some discrepancies between the discharge characteristics. Supported by National Nature Science Foundation of China (Grant No. 40475007) and Foundation of Northwest Normal University (Grant No. NWNU-KJCXGC-03-21)  相似文献   

3.
The lightning-induced-damages in the mid-latitude regions are usually caused during severe thunder-storms. But the discharge parameters of natural lightning are difficult to be measured. Five lightning flashes have been artificially triggered with the rocket-wire technique during the passage of two severe thunderstorms. The discharge current and close electric field of return stroke in artificially triggered lightning have been obtained in microsecond time resolution by using current measuring systems and electric field change sensors. The results show that the five triggered lightning flashes include 1 to 10 return strokes, and the average return stroke current is 11.9 kA with a maximum of 21.0 kA and a mini-mum of 6.6 kA, similar to the subsequent return strokes in natural lightning. The half peak width of the current waveform is 39 μs, which is much larger than the usual result. The peak current of stroke Ip (kA) and the neutralized charge Q(C) has a relationship of Ip = 18.5Q0.65. The radiation field of return stroke is 5.9 kV·m-1 and 0.39 kV·m-1 at 60 m and 550 m, respectively. The radiation field decreases as r -1.119 with increase of horizontal distance r from the discharge channel. Based on the well-accepted transmission line model, the speed of return stroke is estimated to be about 1.4×108 m·s-1, with a variation range of (1.1―1.6)×108 m·s-1. Because of the similarities of the triggered lightning and natural lightning, the results in this article can be used in the protection design of natural lightning.  相似文献   

4.
This paper examines the effects of the mixing of dry air into a cloud top from the point of view of the droplet spectra. It is shown theoretically that the resulting cycling of the air up and down in the cloud, as seems to be the essential mechanism by which cumuli have been diluted to their observed liquid water mixing ratio, can double the largest drop radius and generate cloud parcels containing drops of all sizes up to this maximum. These changes in the droplet distribution with size occur by a process which is not greatly influenced by the cloud condensation nuclei or the details of droplet growth since maritime like spectra can develop in continental type cumuli. It shows that large numbers of cloud condensation nuclei should not have much effect in inhibiting the rainforming process by reducing coalescence growth. On the contrary, the controlling parameters which determine precipitation efficiency and times seem to be those which control the mixing.  相似文献   

5.
Different approaches are used in estimating the global production of NOx by lightning flashes, including field measurements carried out during thunderstorm conditions, theoretical studies combining the physics and chemistry of the electrical discharges, and measurements of NOx yield in laboratory sparks with subsequent extrapolation to lightning. In the latter procedure, laboratory data are extrapolated to lightning using the energy as the scaling quantity. Further, in these studies only the return strokes are considered assuming that contributions from other processes such as leaders, continuing currents, M components, and K processes are negligible. In this paper, we argue that the use of energy as the scaling quantity and omission of all lightning processes other than return strokes are not justified. First, a theory which can be used to evaluate the NOx production by electrical discharges, if the current flowing in the discharge is known, is presented. The results obtained from theory are compared with the available experimental data and a reasonable agreement is found. Numerical experiments suggest that the NOx production efficiency of electrical discharges depends not only on the energy dissipated in the discharge, but also on the shape of current waveform. Thus, the current signature, can influence extrapolation of laboratory data to lightning flashes. Second, an estimation of the NOx yield per lightning flash is made by treating the lightning flash as a composite event consisting of several discharge processes. We show that the NOx production takes place mainly in slow discharge processes such as leaders, M components, and continuing currents, with return strokes contributing only a small fraction of the total NOx. The results also show that cloud flashes are as efficient as ground flashes in NOx generation. In estimating the global NOx production by lightning flashes the most influencing parameter is the length of the lightning discharge channel inside the cloud. For the total length of channels inside the cloud of a typical ground flash of about 45 km, we estimate that the global annual production of NOx is about 4 Tg(N).  相似文献   

6.
利用无狭缝红外光谱仪, 获得山东地区闪电放电过程760~970 nm范围的近红外光谱.光谱特征分析得出: 近红外光谱主要是峰值电流之后、放电后期的辐射, 谱线主要是中性原子的贡献.首次讨论了放电后期的通道温度和光谱总强度沿放电通道的演化特征.结果表明, 通道温度较回击电流上升至峰值阶段降低, 约为16000 K; 不同闪电的光谱结构、通道温度差异不大, 反映了放电等离子体复合阶段的特性; 地闪通道的温度和光谱总强度沿放电通道略呈单调变化趋势, 接地点附近最大; 云闪通道的温度和光谱总强度沿放电通道非单调变化, 在通道的拐弯、分叉以及结点附近发生突变.  相似文献   

7.
Lightning and electrification at volcanoes are important because they represent a hazard in their own right, they are a component of the global electrical circuit, and because they contribute to ash particle aggregation and modification within ash plumes. The role of water substance (water in all forms) in particular has not been well studied. Here data are presented from a comprehensive global database of volcanic lightning. Lightning has been documented at 80 volcanoes in association with 212 eruptions. The Volcanic Explosivity Index (VEI) could be determined for 177 eruptions. Eight percent of VEI = 3–5 eruptions have reported lightning, and 10% of VEI = 6, but less than 2% of those with VEI = 1–2. These findings suggest consistent reporting for larger eruptions but either less lightning or possible under-reporting for small eruptions. Ash plume heights (142 observations) show a bimodal distribution with main peaks at 7–12 km and 1–4 km. The former are similar to heights of typical thunderstorms and suggest involvement of water substance, whereas the latter suggest other factors contributing to electrical behavior closer to the vent. Reporting of lightning is more common at night (56%) and less common in daylight (44%). Reporting also varied substantially from year to year, suggesting that a more systematic observational strategy is needed. Several weak trends in lightning occurrence based on magma composition were found. The bimodal ash plume heights are obvious only for andesite to dacite; basalt and basaltic-andesite evenly span the range of heights; and rhyolites are poorly represented. The distributions of the latitudes of volcanoes with lightning and eruptions with lightning roughly mimic the distribution of all volcanoes, which is generally flat with latitude. Meteorological lightning, on the other hand, is common in the tropics and decreases markedly with increasing latitude as the ability of the atmosphere to hold water decreases poleward. This finding supports the idea that if lightning in large (deep) eruptions depends on water substance, then the origin of the water is primarily magma and not entrainment from the surrounding atmosphere. Seasonal effects show that more eruptions with lightning were reported in winter (bounded by the respective autumnal and vernal equinoxes) than in summer. This result also runs counter to the expectations based on entrainment of local water vapor.  相似文献   

8.
沿海地区一次多单体雷暴电荷结构时空演变   总被引:3,自引:0,他引:3       下载免费PDF全文
利用闪电放电辐射源三维时空分布测量,分析了山东低海拔地区一次多单体雷暴过程的电荷结构演变以及与回波强度的关系.结果表明对流云区电荷结构是典型的上正下负电偶极结构,且随着雷暴发展正负电荷层强度增大,高度抬升.负电荷区处在40 dBz以上的强回波区域中,正电荷层处在约40 dBz区域中.层状云区也有类似结构,只是强度弱,高度低.观测到的四层电荷结构是出现在对流区消散阶段,此时,由于云体不同部位的不同消散程度,电荷结构发生断裂,云体前部正负电荷区下沉,云体中部正负电荷区高度变化不大,但负电荷区域变薄,呈现出四层电荷结构.从本例结果说明,雷暴优势起电机制通常能形成电偶极或三极性结构,多极结构可能不是起电形成.本文还分析了一次负地闪传输过程,和宏观电荷结构很好吻合,说明利用三维定位系统观测,可以较好地描述雷暴宏观电荷结构.  相似文献   

9.
The negative CG lightning discharges neutralizing negative charges in cloud usually dominate for most of thunderstorms. However, a lot of positive CG light-ning discharges often occur in the disappearing stage of thunderstorms, in the stratiform region of mesoscale convective systems and some supercells producing hail and tornado. Because the positive CG lightning discharges produce larger current of the return stroke and neutralize more charges due to the continuing currents with longer las…  相似文献   

10.
云闪放电通道内的粒子密度及分布特征   总被引:2,自引:1,他引:1       下载免费PDF全文
依据在中国西藏高原地区得到的6幅云闪放电通道的光谱,由谱线波长、相对强度和跃迁几率等信息,结合等离子体理论,计算了云闪放电通道的温度和电子密度;进而,利用Saha方程、电荷守恒和粒子数守恒方程,得到了粒子处于各电离级上的数密度、通道质量密度、压强和平均电离度等参数,并对云闪通道内部粒子数分布特点进行了分析.结果表明,与地闪回击通道类似,云闪通道接近于完全电离,通道内部以单次电离的离子为主,且NII离子数密度最高.具有较高温度的通道位置处,中性和一次以上电离离子数密度的绝对值和相对值都较高,但是,不同温度下NII、OII、ArII粒子的相对浓度变化不大.与地闪回击通道不同,云闪同一放电通道内不同位置处粒子数密度差异较大,且沿通道没有显示规律性变化,通道压强从零点几到几兆帕.  相似文献   

11.
Summary The results of a recent investigation on the free growth rate and the growth forms of ice in supercooled water and aqueous solutions are presented. The results are used to discuss the structure of frozen drops, the structure of hailstones, the mechanisms which are responsible for the glaciation of atmospheric clouds and the mechanisms which cause cloud electrification. It was found that the presence of dissolved salts and dust particles in cloud drops favor the formation of spongy and polycristalline ice, that it is unlikely for frozen cloud drops to develop into hexagonal shaped ice single-crystals, and that it is also unlikely that in atmospheric clouds freezing drops shatter and splinter. The latter result casts serious doubts on the splintering mechanism to contribute to thunderstorm electrification and to promote glaciation of clouds.This work was supported by the National Science Foundation under Grant No. GP 2922.  相似文献   

12.
The active layer of frozen ground data assimilation system adopts the SHAW (Simulteneous Heat and Water) model as the model operator. It employs an ensemble kalman filter to fuse state variables predicted by the SHAW model with in situ observation and the SSM/I 19 GHz brightness temperature for the purpose of optimizing model hydrothermal state variables. When there is little water movement in the frozen soil during the winter season, the unfrozen water content depends primarily on soil temperature. Thus, soil temperature is the crucial state variable to be improved. In contrast, soil moisture is heavily influenced by precipitation during the summer season. The simulation accuracy of soil moisture has a strong and direct impact on the soil temperature. In this case, the crucial state variable to be improved is soil moisture. One-dimensional assimilation experiments that have been carried out at AMDO station show that land data assimilation method can improve the estimation of hydrothermal state variables in the soil by fusing model information and observation information. The reasonable model error covariance matrix plays a key role in transferring the optimized surface state information to the deep soil, and it provides improved estimations of whole soil state profiles. After assimilating the 4-cm soil temperature by in situ observation, the soil temperature RMSE (Root Mean Square Error) of each soil layer decreased by 0.96°C on average relative to the SHAW simulation. After assimilating the 4-cm soil moisture in situ observation, the soil moisture RMSE of each soil layer decreased by 0.020 m3·m−3. When assimilating the SSM/I 19 GHz brightness temperature, the soil temperature RMSE of each soil layer during the winter decreased by 0.76°C, while the soil moisture RMSE of each soil layer during the summer decreased by 0.018 m3·m−3.  相似文献   

13.
We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak (D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration ( \(N_{\rm tot}\) ), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.  相似文献   

14.
Spectrograms and ELF power spectra of magnetic variations originated from sprite-producing lightning discharges have been analyzed to extract both parent lightning and sprite parameters. Some of the spectrograms and power spectra have been found to have approximately quasi-oscillatory shape in the frequency range 0–40 Hz with maximum repetition period about 15–20 Hz. A theory predicts that this interesting peculiarity of the power spectra can be due to interference between electromagnetic fields originated from the parent lightning discharge and from the sprite. A smooth envelope of the power spectrum was shown to have a form of damped oscillations with period close to reciprocal value of sprite lag time. A technique of extracting sprite parameters based on the sprite-producing lightning power spectrum is proposed. The lack of the first Schumann resonance and other features occasionally observed in spectral resonance structure were also discussed.  相似文献   

15.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The surface tension lowering by surface-active substances has been measured on rainwater, melted snow, and dispersions of atmospheric particles in water, with a film balance and a tensiometer. The precipitation water was sampled during 1979, 1980, and 1981 in the city of Frankfurt/Main. From measurements with the film balance technique, normalized concentrations of insoluble and weakly soluble surface-active substances have been estimated. Soluble surface-active substances were determined from measurements with a tensiometer. It was found that the normalized concentration of theinsoluble and weakly soluble surface-active material on rainwater or melted snow shows a maximum during late spring of about 2.5 · 10−7 moles/l and a minimum during wintertime of about 5 · 10−8 moles/l. These concentrations are too low to influence significantly the condensation of water vapour on cloud droplets or the evaporation of water from them. Thesoluble surface-active material on rainwater or melted snow was found to have concentrations of the order of 2 · 10−6 moles/l. These concentrations are also too small to have a significant influence on cloud physical processes.  相似文献   

17.
Snow and frozen soil prevail in cold regions worldwide, and the integration of these processes is crucial in hydrological models. In this study, a combined model was developed by fully coupling a simultaneous heat and water model with a geomorphologically based distributed hydrological model. The combined model simulates vertical and lateral water transfer as well as vertical heat fluxes and is capable of representing the effects of frozen soil and snowmelt on hydrological processes in cold regions. This model was evaluated by using in situ observations in the Binggou watershed, an experimental watershed for cold region hydrology of the Watershed Allied Telemetry Experimental Research Project. Results showed that the model was able to predict soil freezing and thawing, unfrozen soil water content, and snow depth reasonably well. The simulated hydrograph was in good agreement with the in situ observation. The Nash–Sutcliffe coefficient of daily discharge was 0.744 for the entire simulation period, 0.472 from April to June, and 0.711 from June to November. This model can improve our understanding of hydrological processes in cold regions and assess the impacts of global warming on hydrological cycles and water resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The Hekla eruption cloud on 26–27 February 2000 was the first volcanic cloud to be continuously and completely monitored advecting above Iceland, using the C-band weather radar near the Keflavík international airport. Real-time radar observations of the onset, advection, and waning of the eruption cloud were studied using time series of PPI (plan-position indicator) radar images, including VMI normal, Echotop, and Cappi level 2 displays. The reflectivity of the entire volcanic cloud ranges from 0 to >60 dBz. The eruption column above the vent is essentially characterised by VMI normal and Cappi level 2 values, >30 dBz, due to the dominant influence of lapilli and ash (tephra) on the overall reflected signal. The cloud generated by the column was advected downwind to the north-northeast. It is characterised by values between 0 and 30 dBz, and the persistence of these reflections likely result from continuing water condensation and freezing on ash particles. Echotop radar images of the eruption onset document a rapid ascent of the plume head with a mean velocity of ~30 to 50 m s–1, before it reached an altitude of ~11–12 km. The evolution of the reflected cloud was studied from the area change in pixels of its highly reflected portions, >30 dBz, and tied to recorded volcanic tremor amplitudes. The synchronous initial variation of both radar and seismic signals documents the abrupt increase in tephra emission and magma discharge rate from 18:20 to 19:00 UTC on 26 February. From 19:00 the >45 dBz and 30–45 dBz portions of the reflected cloud decrease and disappear at about 7 and 10.5 h, respectively, after the eruption began, indicating the end of the decaying explosive phase. The advection and extent of the reflected eruption cloud were compared with eyewitness accounts of tephra fall onset and the measured mass of tephra deposited on the ground during the first 12 h. Differences in the deposit map and volcanic cloud radar map are due to the fact that the greater part of the deposit originates by fallout off the column margins and from the base of the cloud followed by advection of falling particle in lower level winds.Editorial responsibility: P. Mouginis-Mark  相似文献   

19.
用宽带干涉仪观测云内闪电通道双向传输的特征   总被引:5,自引:6,他引:5       下载免费PDF全文
利用闪电宽带干涉仪系统对闪电的观测表明,地闪和云闪的云内闪电通道都存在双向发展的特征. 闪电在云中负电荷区域初始激发以后,在通道两端发生向不同方向同时发展的击穿过程. 这两种击穿过程均产生较强的辐射,且辐射频谱特征十分相似,表明云内闪电通道两端发生的击穿过程可能均为负击穿过程. 相应电场变化表明闪电通道双向发展期间伴随着负电荷的向上转移. 这一观测事实与Kasemir早期提出的闪电通道双向发展的概念有一定的差异.  相似文献   

20.
Aufeis (also known as icings) are large sheet-like masses of layered ice that form in river channels in arctic environments in the winter as groundwater discharges to the land surface and subsequently freezes. Aufeis are important sources of water for Arctic river ecosystems, bolstering late summer river discharge and providing habitat for caribou escaping insect harassment. The aim of this research is to use numerical simulations to evaluate a conceptual model of subsurface hydrogeothermal conditions that can lead to the formation of aufeis. We used a conceptual model based on geophysical data from the Kuparuk aufeis field on the North Slope of Alaska to develop a two-dimensional heterogeneous vertical profile model of groundwater flow, heat transport, and freeze/thaw dynamics. Modelling results showed that groundwater can flow to the land surface through subvertical high permeability pathways during winter months when the lower permeability soils near the land surface are frozen. The groundwater discharge can freeze on the surface, contributing to aufeis formation throughout the winter. We performed sensitivity analyses on subsurface properties and surface temperature and found that aufeis formation is most sensitive to the volume of unfrozen water available in the subsurface and the rate at which the subsurface water travels to the land surface. Although a trend of warming air temperatures will lead to a greater volume of unfrozen subsurface water, the aufeis volume can be reduced under warming conditions if the period of time for which air temperatures are below freezing is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号