首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Seismic potential of Southern Italy   总被引:1,自引:2,他引:1  
To improve estimates of the long-term average seismic potential of the slowly straining South Central Mediterranean plate boundary zone, we integrate constraints on tectonic style and deformation rates from geodetic and geologic data with the traditional constraints from seismicity catalogs. We express seismic potential (long-term average earthquake recurrence rates as a function of magnitude) in the form of truncated Gutenberg–Richter distributions for seven seismotectonic source zones. Seismic coupling seems to be large or even complete in most zones. An exception is the southern Tyrrhenian thrust zone, where most of the African–European convergence is accommodated. Here aseismic deformation is estimated to range from at least 25% along the western part to almost 100% aseismic slip around the Aeolian Islands. Even so, seismic potential of this zone has previously been significantly underestimated, due to the low levels of recorded past seismicity. By contrast, the series of 19 M6–7 earthquakes that hit Calabria in the 18th and 19th century released tectonic strain rates accumulated over time spans up to several times the catalog duration, and seismic potential is revised downward. The southern Tyrrhenian thrust zone and the extensional Calabrian faults, as well as the northeastern Sicilian transtensional zone between them (which includes the Messina Straits, where a destructive M7 event occurred in 1908), all have a similar seismic potential with minimum recurrence times of M ≥ 6.5 of 150–220 years. This potential is lower than that of the Southern Apennines (M ≥ 6.5 recurring every 60 to 140 years), but higher than that of southeastern Sicily (minimum M ≥ 6.5 recurrence times of 400 years). The high seismicity levels recorded in southeastern Sicily indicate some clustering and are most compatible with a tectonic scenario where the Ionian deforms internally, and motions at the Calabrian Trench are small. The estimated seismic potential for the Calabrian Trench and Central and Western Sicily are the lowest (minimum M ≥ 6.5 recurrence times of 550–800 years). Most zones are probably capable of generating earthquakes up to magnitudes 7–7.5, with the exception of Central and Western Sicily where maximum events sizes most likely do not exceed 7.  相似文献   

2.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

3.
4.
The present note is intended as a contribution to the clarification of the collision process, generally assumed to be active between the African and the Eurasian plates in the area of the Messina Straits.For this purpose detailed analyses are made of the surveys carried out in the Straits of Messina in order to investigate the 1908 earthquake. The magnitude and intensity are established; limits are set for the linear dimension of the fault and of the dislocation that gave rise to the earthquake and an estimate is then given of these parameters. The results are then set out of the investigation into the focal mechanism of the earthquake of 1908. The results are also studied of geodetic surveys carried out at the time for the purpose of measuring the variations in height that occurred during the earthquake.A study is also made of the results of geodetic surveys (some of which are still under way) designed to measure the horizontal movements of Sicily with respect to Calabria in order to study locally the continental collision process in the area of the Messina Straits.It is found that the old and recent geodetic measurements as well as the fault-plane solution of the old and recent earthquakes of that area and the slips associated with those earthquakes indicate a motion towards the north of Sicily with respect to Calabria.  相似文献   

5.
In this study, we analyze the recent (1990–1997) seismicity that affected the northern sector (Sannio–Benevento area) of the Southern Apennines chain. We applied the Best Estimate Method (BEM), which collapses hypocentral clouds, to the events of low energy (Md max=4.1) seismic sequences in order to constrain the location and geometry of the seismogenetic structures. The results indicate that earthquakes aligned along three main structures: two sub-parallel structures striking NW–SE (1990–1992, Benevento sequence) and one structure striking NE–SW (1997, Sannio sequence). The southernmost NW–SE structure, which dips towards NE, overlies the fault that is likely to be responsible for a larger historical earthquake (Io max=XI MCS, 1688 earthquake). The northernmost NW–SE striking structure dips towards SW. The NE–SW striking structure is sub-vertical and it is located at the northern tip of the fault segment supposed to be responsible for the 1688 earthquake. The spatio-temporal evolution of the 1990–1997 seismicity indicates a progressive migration from SE (Benevento) to NW (Sannio) associated to a deepening of hypocenters (i.e., from about 5 to 12 km). Hypocenters cluster at the interface between the major structural discontinuities (e.g., pre-existing thrust surfaces) or within higher rigidity layers (e.g., the Apulia carbonates). Available focal mechanisms from earthquakes occurred on the recognized NW–SE and NE–SW faults are consistent with dip-slip normal solutions. This evidences the occurrence of coexisting NW–SE and NE–SW extensions in Southern Apennines.  相似文献   

6.
Nappi  R.  Gaudiosi  G.  Alessio  G.  De Lucia  M.  Porfido  S. 《Natural Hazards》2016,86(2):295-324

The aim of this study was to provide a contribution to seismic hazard assessment of the Salento Peninsula (Apulia, southern Italy). It is well known that this area was struck by the February 20, 1743, earthquake (I 0 = IX and M w = 7.1), the strongest seismic event of Salento, that caused the most severe damage in the towns of Nardò (Lecce) and Francavilla Fontana (Brindisi), in the Ionian Islands (Greece) and in the western coast of Albania. It was also widely felt in the western coast of Greece, in Malta Islands, in southern Italy and in some localities of central and northern Italy. Moreover, the area of the Salento Peninsula has also been hit by several low-energy and a few high-energy earthquakes over the last centuries; the instrumental recent seismicity is mainly concentrated in the western sector of the peninsula and in the Otranto Channel. The Salento area has also experienced destructive seismicity of neighboring regions in Italy (the Gargano Promontory in northern Apulia, the Southern Apennines chain, the Calabrian Arc) and in the Balkan Peninsula (Greece and Albania). Accordingly, a critical analysis of several documentary and historical sources, as well as of the geologic–geomorphologic ground effects due to the strong 1743 Salento earthquake, has been carried out by the authors in this paper; the final purpose has been to re-evaluate the 1743 MCS macroseismic intensities and to provide a list of newly classified localities according to the ESI-07 scale on the base of recognized Earthquake Environmental Effects. The result is a quite different damage scenario due to this earthquake that could raise the seismic potential currently recognized for the Salento area, and consequently upgrade the seismic hazard classification of the Salento. Indeed it is important to remind that currently, despite the intense earthquake activity recorded not only in the Otranto Channel, but especially in Greece and Albania, this area is classified in the least dangerous category of the Seismic Classification of the Italian territory (IV category).

  相似文献   

7.
8.
The city of Rome is subjected to moderate seismic risk due to both local and external seismicity. Up to now, the maximum intensity felt has never exceeded VIII MCS. The 1 November 1895 (I o = VII) and 31 August 1909 (I o = VI) earthquakes demonstrate that small local events can also cause damage in a large old city. In the present work, we have re-evaluated the intensity values of those two events by means of automatic processing. A comparison between the present results with geological evidence and previous studies is shown, especially for the historical centre of Rome. For the first time, the 1909 earthquake instrumental magnitudeM L = 3.6 has been calculated from original recordings.  相似文献   

9.
In this paper, the applicability of the Newmark method at regional, sub-regional and site scales has been investigated in the Lorca Basin (Murcia). This basin is located in one of the most seismically active regions of Spain. The area is very interesting for studying earthquake-induced slope instabilities as there are well-known cases associated with specific earthquakes. For the regional and sub-regional scales, a geographic information system has been used to develop an implementation of Newmark sliding rigid block method. Soil and topographic amplification effects have been particularly considered. Subsequently, ‘Newmark displacement’ maps for deterministic seismic scenarios have been produced. Some specific studies have also been performed using limit equilibrium methods to estimate the safety factor and the critical acceleration of certain slope instabilities at a site scale. These instabilities were the rock slides related to recent seismic series at the Lorca Basin: 2002 Bullas (M w = 5.0) and 2005 La Paca (M w = 4.8). Finally, the safety factor, critical acceleration and Newmark displacement values estimated at different scales have been compared to determine which scale is most suitable for the Newmark method.  相似文献   

10.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

11.
Iceland has been subjected to destructive earthquakes and volcanic eruptions throughout history. Such events are often preceded by changes in earthquake activity over varying timescales. Although most seismicity is confined to micro-earthquakes, large earthquakes have occurred within populated regions. Following the most recent hazardous earthquakes in 2000, the Icelandic Meteorological Office (IMO) developed an early warning and information system (EWIS) Web-site for viewing near-real-time seismicity in Iceland. Here we assess Web-site usage data in relation to earthquake activity, as recorded by the South Iceland Lowland (SIL) seismic network. Between March 2005 and May 2006 the SIL seismic network recorded 12,583 earthquakes. During this period, the EWIS Web-site logged a daily median of 91 visits. The largest onshore event (M L 4.2) struck 20 km from Reykjavík on 06 March 2006 and was followed by an immediate, upsurge in usage resulting in a total of 1,173 unique visits to the Web-site. The greatest cluster of large (≥M L 3) events occurred 300 km offshore from Reykjavík in May 2005. Within this swarm, 9 earthquakes ≥M L 3 were detected on 11 May 2005, resulting in the release of a media bulletin by IMO. During the swarm, and following the media bulletin, the EWIS Web-site logged 1,234 unique visits gradually throughout the day. In summary, the data reveal a spatial and temporal relationship between Web-site usage and earthquake activity. The EWIS Web-site is accessed immediately after the occurrence of a local earthquake, whereas distant, unfelt earthquakes generate gradual interest prompted by media bulletins and, possibly, other contributing factors. We conclude that the Internet is a useful tool for displaying seismic information in near-real-time, which has the capacity to help increase public awareness of natural hazards.  相似文献   

12.
This article presents the results of a detailed study of the effects of the 1883 earthquake, which occurred at the island of Ischia (Gulf of Naples) and produced the total destruction of buildings in the epicentral area (Casamicciola town). Despite the moderate magnitude, this event was characterised by very high intensities (I max = XI degree MCS) mainly due to the shallow depth of the source. The study of the earthquake shows that the intensities, which decreased rapidly with distance, were affected by source directivity, according to the causative fault geometry and tectonic structures, while local amplification of damage was observed where soft soils outcrop. The attenuation of seismic intensity with distance was evaluated using the well-known relation of intensity versus epicentral distance (Blake’s method). The diverse gradients of attenuation, observed in different directions, were ascribed to the various geological features of the shallow crust of the island. In order to evaluate the role of geology in the damage level, we computed different attenuation models for stiff and soft soils outcropping on the island. A systematic local amplification of about 1 MCS degree associated to the presence of reworked tuffs was obtained. This study also shows the influence of geological conditions on the evaluation of macroseismic data and supplies useful elements to derive a predictive map of potential site effects.  相似文献   

13.
A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41 cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and hence the pressure evolution of the unit-cell volume of the I41 cd structure has been described using a third-order Birch–Murnaghan equation of state (BM-EoS) with the following parameters: V 0  = 923.21(6) Å3, K 0  = 45.6(6) GPa, and K′ = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a 0  = 9.4747(3) Å, K 0a  = 73.3(9) GPa, K′ a  = 5.1(3) and c 0  = 10.2838(4) Å, K 0c  = 24.6(3) GPa, K′ c  = 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β 0c 0a  = 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively rigid tetraborate groups [B4O7]2− forms channels occupied by lithium along the polar c–axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2− units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic (Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228–232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337–340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337–342, 1992).  相似文献   

14.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

15.
The Jurassic paleogeographic position of the Pontides is not well studied because of insufficient paleomagnetic data. For this reason, a paleomagnetic study was carried out in order to constrain the paleolatitudinal drift of the Turkish blocks during the Jurassic period. A total of 32 sites were sampled from volcanic and volcanoclastic rocks of the Lower/Middle Jurassic Kelkit formation (Eastern Pontides), Mudurnu formation (Sakarya continent) and Upper Jurassic–Lower Cretaceous Ferhatkaya formation exposed around Amasya region (Eastern Pontides). Rock magnetic experiments demonstrate that the main ferromagnetic mineral is pseudo-single-domain titanomagnetite in these rocks. Paleomagnetic analysis revealed two main components of the natural remanent magnetization during stepwise thermal and alternating field demagnetization. The first component is a low-coercivity (unblocking temperature) component with a direction sometimes similar to that of the earth’s present field or a viscous component. The second component, which is interpreted as the characteristic remanent magnetization (ChRM) direction, has low to high coercivity properties between 20 and 100 mT or unblocking temperatures between 300 and 580°C. A positive fold test at the 95% level of confidence proved that the ChRM of the sites is primary. Paleomagnetic directions calculated for the Kelkit formation in the Eastern Pontides have a mean direction of D = 334.8°, I = 49.7°, α 95 = 7.1° after tilt-correction. A mean direction of D = 332.2°, I = 48.5°, α 95 = 14.6° was obtained from the volcanoclastic rocks of the Mudurnu formation, and D = 324.3°, I = 43.3°, α 95 = 9.5° was calculated for the Upper Jurassic–Lower Cretaceous limestones/Ferhatkaya formation of the Amasya region. The Jurassic rocks in the Eastern Pontides and Mudurnu region are considered to represent products of the rifted Neo-Tethys ocean, while the Upper Jurassic–Lower Cretaceous sediments in Amasya are related to basin-filling materials. The data suggest that the Kelkit formation was formed at 30.5°N paleolatitude and the equivalent Mudurnu formation at 29.5°N paleolatitude. The paleolatitude of the Eastern Pontides indicates that this rifting block was separated from Eurasia by a marginal basin instead of being a part of Eurasia. The lower paleolatitude of the Amasya region at 24.8°N in the Upper Jurassic to Lower Cretaceous clearly indicates southward drift of the Turkish blocks during the Jurassic to Lower Cretaceous period together with the motion of Eurasia.  相似文献   

16.
An analysis of the data in the catalogues of Italian earthquakes indicates that large earthquakes which occur in the area of radius of about 140 km centered in the Straits of Messina occur in sequences. Each sequence is generally formed by two events and covers an average time window of 10 years.The last four sequences occurred in the time windows 1783–1891, 1818–1823, 1865–1870, 1905–1908 and are separated by about 40 years indicating that in that area there is now a gap in the time domain.The analysis of the data in the Catalogue for the region between the latitudes 39°N and 41°50′N indicates that in that region the large earthquakes occurred in 13 sequences. Each sequence is formed by 3 events in average and covers an average time window of 7 years. This indicates that, after the earthquake of Nov. 1980, which occurred after a gap of 67 years, other moderately large earthquakes may be expected in that area in the next few years.  相似文献   

17.
Characteristics of the seismicity in depth ranges 0–33 and 34–70 km before ten large and great (M w = 7.0−9.0) earthquakes of 2000–2008 in the Sumatra region are studied, as are those in the seismic gap zones where no large earthquakes have occurred since at least 1935. Ring seismicity structures are revealed in both depth ranges. It is shown that the epicenters of the main seismic events lie, as a rule, close to regions of overlap or in close proximity to “shallow” and “deep” rings. Correlation dependences of ring sizes and threshold earthquakes magnitudes on energy of the main seismic event in the ring seismicity regions are obtained. Identification of ring structures in the seismic gap zones (in the regions of Central and South Sumatra) suggests active processes of large earthquake preparation proceed in the region. The probable magnitudes of imminent seismic events are estimated from the data on the seismicity ring sizes.  相似文献   

18.
The dense recordings of the K-NET and KiK-net nationwide strong motion network of 1,189 accelerometers show clearly the radiation and propagation properties of the strong ground motions associated with the 2011 off-the-Pacific Coast-of-Tohoku, Japan (Mw = 9.0) earthquake. The snapshots of seismic wave propagation reveal strong ground motions from this earthquake that originate from three large slips; the first two slips occurred over the plate interface of off-Miyagi at the southwest and the east of the hypocenter, and the third one just beneath the northern end of Ibaraki over the plate interface or in the crust. Such multiple shocks of this event caused large accelerations (maximum 1–2 G) and prolonged ground shaking lasting several minutes with dominant high-frequency (T < 1 s) signals over the entire area of northern Japan. On the other hand, ground motions of relatively longer–period band (T = 1–2 s), which caused significant damage to wooden-frame houses, were about 1/2–1/3 of those observed near the source area of the destructive 1995 Kobe, Japan (M = 7.3) earthquake. Also, the long-period (T = 6–8 s) ground motion in the Kanto (Tokyo) sedimentary basin was at an almost comparable level of those observed during the recent Mw = 7 inland earthquakes, but not as large as that from the former M = 8 earthquakes. Therefore, the impact of the strong ground motion from the present M = 9 earthquake was not as large as expected from the previously M = 7–8 earthquakes and caused strong motion damage only to short-scale construction and according to instruments inside the buildings, both have a shorter (T < 1 s) natural period.  相似文献   

19.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

20.
The aim of the present work is to compile and update a catalogue of the instrumentally recorded earthquakes in Egypt, with uniform and homogeneous source parameters as required for the analysis of seismicity and seismic hazard assessment. This in turn requires a detailed analysis and comparison of the properties of different available sources, including the distribution of events with time, the magnitude completeness, and the scaling relations between different kinds of magnitude reported by different agencies. The observational data cover the time interval 1900–2004 and an area between 22°–33.5° N and 25°–36° E. The linear regressions between various magnitude types have been evaluated for different magnitude ranges. Using the best linear relationship determined for each available pair of magnitudes, as well as those identified between the magnitudes and the seismic moment, we convert the different magnitude types into moment magnitudes M W, through a multi-step conversion process. Analysis of the catalogue completeness, based on the M W thus estimated, allows us to identify two different time intervals with homogeneous properties. The first one (1900–1984) appears to be complete for M W ≥ 4.5, while the second one (1985–2004) can be considered complete for magnitudes M W ≥ 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号